
_ ■

'

~

~

P r i m e ,  P R I M O S ®  U s e r ' s  G u i d e
Revision  22.0

DOC4130-5LA



PRIMOS® User's Guide

Fifth Edition

Stephen Lewontin

This guide documents the software operation of the Prime Computer
and its supporting systems and utilities as implemented at
Master Disk Revision 22.0 (Rev. 22.0).

Prime Computer, Inc., Prime Park, Natick, MA 01760



Copyright Information
The information in this document is subject to change without notice and should not be construed as a
commitment by Prime Computer, Inc. Prime Computer, Inc. assumes no responsibility for any errors that may
appear in this document.
The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

Copyright © 1988 by Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760
PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of Prime Computer, Inc.
DISCOVER, EDMS, FM+, INFO/BASIC, INFORM, Prime INFORMATION, Prime INFORMATION
CONNECTION, Prime INFORMATION EXL, MDL, MIDAS, MIDASPLUS, MXCL, PRIME EXL, PRIME
MEDUSA, PERFORM, PERFORMER, PRIME/SNA, PRIME TIMER, PRIMAN, PRIMELINK, PRIMENET,
PRIMEWAY, PRIMEWORD, PRIMIX, PRISAM, PRODUCER, Prime INFORMATION/pc, PST 100, PT25,
PT45, PT65, PT200, PT250, PW153, PW200, PW250, RINGNET, SIMPLE, 50 Series, 400, 750, 850, 2250,
2350, 2450, 2455, 2550, 2655, 2755, 4050, 4150, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955, and 9955H
are trademarks of Prime Computer, Inc.

Printing History

Credits

First Edition (IDR4130) lanuary 1980
Second Edition (PDR4130) December 1980
Third Edition (DOC4130-190) August 1982
Fourth Edition (DOC4130-4LA) April 1985
Update 1 (UPD4130-41A) January 1986
Update 2 (UPD4130-42A) July 1987
Fifth Edition (DOC4130-5LA) October 1988

Project Editor: Barbara Fowlkes
Project Support: Frank Calvillo, Joan Karp, Don Markuson, Betsy Perry
Design: Leo Maldonado
Graphics Support: Mingling Chang, Jeannette Monaco
Illustration: Mike Moyle
Document Preparation: Mary Mixon, Katherine Normington
Composition: Julie Cyphers, Sharon Temple
Production: Judith Gordon



How to Order Technical Documents
Follow the instructions below to obtain a catalog, a price list, and information on placing orders.
United States Only: Call Prime Telemarketing, toll free, at 800-343-2533, Monday through Friday, 8:30 a.m. to
5:00 p.m. (EST).
International: Contact your local Prime subsidiary or distributor.

Customer Support Center
Prime provides the following toll-free numbers for customers in the United States needing service:
1-800-322-2838 (Massachusetts)
1-800-541-8888 (Alaska and Hawaii)
1-800-343-2320 (within other states)
For other locations, contact your Prime representative.

Surveys and Correspondence
Please comment on this manual using the Reader Response Form provided in the back of this book. Address any
additional comments on this or other Prime documents to:
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

r
r



Contents

About  This  Book XI

r

Part I: PRIMOS Basics

Getting  Started
The PRIMOS Operating System
The Terminal
The User's Dialog With PRIMOS
The Command Line
Essential PRIMOS Commands

The PRIMOS File System
File System Objects
Naming File System Objects
The File System Tree Structure
Pathnames
Shortening Pathnames
Pathnames, Objectnames, and PRIMOS Commands

PRIMOS File System Commands
Examining Directory Contents
Attaching to Another Directory
Returning to Your Origin Directory
Creating New Directories
Examining the Contents of a File
Renaming File System Objects
Copying File System Objects
Deleting File System Objects
Protecting Objects From Accidental Deletion
Recording Terminal Sessions
Interrupting Commands

1-1
1-1
1-4
1-5
1-7

1-10

2-1
2-1
2-3
2-5
2-6
2-8

2-10

3-1
3-1
3-3
3-5
3-5
3-6
3-7
3-8

3-11
3-12
3-14
3-15



* >

'

4  C r e a t i n g  a n d  P r i n t i n g  F i l e s  4 - 1
T e x t  F i l e s  4 - 1
T e x t  E d i t o r s  4 - 2
U s i n g  E D I T O R  4 - 5
B a s i c  E D  C o m m a n d s  4 - 1 0
P r i n t i n g  T e x t  F i l e s  W i t h  S P O O L  4 - 2 4

5  P r o t e c t i n g  Y o u r  F i l e s  a n d  D i r e c t o r i e s  5 - 1
A n  O v e r v i e w  o f  F i l e  P r o t e c t i o n  5 - 1
A c c e s s  C o n t r o l  L i s t s  ( A C L s )  5 - 3
S p e c i fi c  A C L s  5 - 5
A c c e s s  C a t e g o r i e s  5 - 9
D e f a u l t  P r o t e c t i o n  5 - 1 4
M a t c h i n g  A c c e s s  R i g h t s  5 - 2 0
W h o  C a n  S e t  A C L s  5 - 2 0
T y p e s  o f  A c c e s s  R i g h t s  5 - 2 2
P r i o r i t y  A C L s  5 - 2 8

6  C o m m a n d - l i n e  F e a t u r e s  6 - 1
M u l t i p l e  C o m m a n d s  6 - 1
I t e r a t i o n  6 - 2
W i l d c a r d s  6 - 2
T r e e w a l k i n g  6 - 8
N a m e  G e n e r a t i o n  6 - 1 0
S y n t a x  S u p p r e s s i o n  6 - 1 3

7  C o m m a n d - l i n e  E d i t o r  7 - 1
G e t t i n g  S t a r t e d  7 - 1
A d v a n c e d  E C L  C o m m a n d s  7 - 7
E C L  C o m m a n d  S u m m a r y  7 - 2 4
E C L  C o m m a n d  O p t i o n s  7 - 2 8

8  C u s t o m i z i n g  Y o u r  E n v i r o n m e n t  8 - 1
C h a n g i n g  t h e  P r o m p t  M e s s a g e  8 - 1
C r e a t i n g  a n d  U s i n g  A b b r e v i a t i o n s  8 - 4
G l o b a l  V a r i a b l e s  8 - 1 0
C r e a t i n g  L o g i n  F i l e s  8 - 1 3
S e n d i n g  M e s s a g e s  8 - 1 5
D i s k  Q u o t a s  8 - 1 8

Part II: Programming

9  I n t r o d u c t i o n  t o  P R I M O S  P r o g r a m m i n g  9 - 1
F o r  E x p e r i e n c e d  P r o g r a m m e r s  9 - 1
I n t r o d u c t o r y  O v e r v i e w  9 - 1  " " " "

'



1 0  C o m p i l i n g  P r o g r a m s  1 0 - 1
T h e  S o u r c e  F i l e  1 0 - 1
I n v o k i n g  C o m p i l e r s  1 0 - 2
O b j e c t  F i l e s  1 0 - 4
A d d r e s s i n g  M o d e s  1 0 - 5
L i s t i n g  F i l e s  1 0 - 6
C r o s s - r e f e r e n c e s  1 0 - 7
C o m p i l e r  M e s s a g e s  1 0 - 7
C o m b i n i n g  L a n g u a g e s  i n  a  P r o g r a m  1 0 - 8

1 1  L i n k i n g  P r o g r a m s  1 1 - 1
A d v a n t a g e s  o f  t h e  B I N D  L i n k e r  1 1 - 1
T h e  L i n k i n g  P r o c e s s  1 1 - 2
U s i n g  B I N D  1 1 - 3
U s i n g  L O A D  1 1 - 8

1 2  R u n n i n g  P r o g r a m s  I n t e r a c t i v e l y  1 2 - 1
U s i n g  t h e  I n t e r a c t i v e  E n v i r o n m e n t  1 2 - 1
T h e  R E S U M E  C o m m a n d  1 2 - 2
T h e  S T A R T  C o m m a n d  1 2 - 3
R u n t i m e  E r r o r  M e s s a g e s  1 2 - 5
T h e  C o m m a n d  E n v i r o n m e n t  1 2 - 5

1 3  D e b u g g i n g  P r o g r a m s  1 3 - 1
D B G  C o d e  R e q u i r e m e n t s  1 3 - 1
T h e  F e a t u r e s  o f  D B G  1 3 - 2
C o m p i l i n g  a n d  L i n k i n g  t h e  P r o g r a m  1 3 - 4
I n v o k i n g  a n d  Te r m i n a t i n g  t h e  D e b u g g e r  1 3 - 5
E x a m i n i n g  t h e  S o u r c e  C o d e  1 3 - 5
S t a r t i n g  P r o g r a m  E x e c u t i o n  1 3 - 8
S t o p p i n g  E x e c u t i o n  1 3 - 8
E x a m i n i n g  a n d  M o d i f y i n g  D a t a  1 3 - 1 0
A  S a m p l e  D e b u g g i n g  S e s s i o n  1 3 - 1 1

Part III: PRIMOS System Facilities

1 4  C o m m a n d  F i l e s  1 4 - 1
C o m m a n d  O u t p u t  F i l e s  1 4 - 1
C o m m a n d  I n p u t  F i l e s  1 4 - 4

1 5  T h e  B a s i c s  o f  C P L  1 5 - 1
H o w  D o e s  C P L  W o r k ?  1 5 - 1
C r e a t i n g  a n d  E x e c u t i n g  C P L  P r o g r a m s  1 5 - 2
Us ing  PRIMOS  Commands  in  CPL  Programs  15-3
U s i n g  V a r i a b l e s  i n  C P L  P r o g r a m s  1 5 - 4



Decision  Making  (Branching)  in  CPL  Programs  15-8
U s i n g  F u n c t i o n s  i n  C P L  P r o g r a m s  1 5 - 1 2
Using  CPL  With  Subsystems:  &DATA  Groups  15-13
How  CPL  Programs  End:  The  &RETURN  Directive  15-15
E r r o r s  i n  C P L  P r o g r a m s  1 5 - 1 6
D e b u g g i n g  C P L  P r o g r a m s  1 5 - 1 6
C P L  D i r e c t i v e s  S u m m a r y  1 5 - 1 7

1 6  P h a n t o m  a n d  B a t c h  J o b  P r o c e s s i n g  1 6 - 1
P h a n t o m  E x e c u t i o n  1 6 - 1
B a t c h  E x e c u t i o n  1 6 - 5

1 7  F i l e - h a n d l i n g  U t i l i t i e s  1 7 - 1
S o r t i n g  F i l e s  1 7 - 1
C o m p a r i n g  F i l e s  1 7 - 6
M e r g i n g  T e x t  F i l e s  1 7 - 8
J o i n i n g  S e v e r a l  F i l e s  S e q u e n t i a l l y  1 7 - 1 0

1 8  T a p e s  1 8 - 1
A s s i g n i n g  T a p e  D r i v e s  1 8 - 1
R e l e a s i n g  T a p e  D r i v e s  1 8 - 3
B a c k i n g  U p  a n d  R e s t o r i n g  F i l e s  1 8 - 5
O t h e r  M a g n e t i c  T a p e  O p e r a t i o n s  1 8 - 9

1 9  P R I M E N E T  i g . - j
R e m o t e  F i l e  A c c e s s  1 9 - 2
R e m o t e  L o g i n  1 9 - 7
U s i n g  N E T L I N K  f o r  R e m o t e  A c c e s s  1 9 - 9
Transferring  Files  Between  Systems  With  FTS  19-13

2 0  T h e  C o n d i t i o n  M e c h a n i s m  2 0 - 1
U s i n g  t h e  C o n d i t i o n  M e c h a n i s m  2 0 - 1
T h e  S y s t e m  D e f a u l t  O n - u n i t  2 0 - 2
W r i t i n g  O n - u n i t s  2 0 - 2

Appendices

A  G l o s s a r y  A - 1

B  S y s t e m s  D e f a u l t s  a n d  C o n s t a n t s  B - 1
T e r m i n a l  D e f a u l t s  B - 1
P R I M O S  K e y b o a r d  S t a n d a r d s  B - 1
P R I M O S  K e y b o a r d  D e f a u l t s  B - 1
P R I M O S  C o m m a n d  L i n e  S t a n d a r d s  B - 2
P r o t e c t i o n  B - 2



C  T h e  P r i m e  E x t e n d e d  C h a r a c t e r  S e t  C - 1
S p e c i f y i n g  P r i m e  E C S  C h a r a c t e r s  C - 1
S p e c i a l  M e a n i n g s  o f  P r i m e  E C S  C h a r a c t e r s  C - 2
P R I M E  E x t e n d e d  C h a r a c t e r  S e t  T a b l e  C - 2

D  E r r o r  M e s s a g e s  D - 1
R u n t i m e  E r r o r  M e s s a g e s  D - 1
B a t c h  E r r o r  M e s s a g e s  D - 1 5

E  E d  C o m m a n d  S u m m a r y  E - 1
E D  D e f a u l t s  E - 5
E D  S y m b o l s  E - 6

F  D i r e c t o r y  P a s s w o r d s  F - 1
A s s i g n i n g  D i r e c t o r y  P a s s w o r d s  F - 1
Using  Passwords  to  Gain  Access  to  Directories  F-2
Sett ing  Access  Rights  on  Fi le  System  Objects  F-2
Converting  a  Password  Directory  to  an  ACL  Directory  F-3
Converting  an  ACL  Directory  to  a  Password  Directory  F-5
Creating  a  Password  Subdirectory  Under  an  ACL  Directory  F-6

G  S y s t e m  I n f o r m a t i o n  G - 1

I n d e x  l n d e x - 1

r
r



About This Book

The PRIMOS User's Guide provides an intermediate level introduction to the PRIMOS®
operating system, including the file system, program development environment, and system
facilities. The presentation shows you step by step how to carry out basic operations with the
operating system and many subsystems. Many practical examples are included, and
references to other Prime documents tell you where to find further information.
Part II of this book assumes that you have some programming background in a high level
language. The remainder of the book requires no previous programming experience. The
book assumes that you have no familiarity with Prime equipment or software.

Organization of This Book
The PRIMOS User's Guide has three parts.
Part I, PRIMOS BASICS, introduces the PRIMOS operating system, covering all of the basic
operations you need to do practical work with the system.

• Chapter 1 introduces PRIMOS and describes basic operations, such as establishing a
connection, logging in, and logging out. It also discusses PRIMOS command format
and the mechanics of giving commands.

• Chapter 2 describes the structure of the PRIMOS file system.
• Chapter 3 introduces basic commands for working with the file system.
• Chapter 4 shows you how to create text files using the text editor ED, and how to print

text files with the SPOOL command.
• Chapter 5 describes the PRIMOS file protection system, and introduces the commands

you need to protect your files.
• Chapter 6 explains four enhancements to command line processing: iteration,

wildcarding, treewalking, and name generation.
• Chapter 7 introduces the new PRIMOS Command Line Editor (ECL). ECL has features

that let you edit command tines, recall and resubmit previous command lines, and
quickly carry out repetitive operations.

r
Fifth  Edition  xi



PRIMOS User's Guide

• Chapter 8 shows you how to customize many aspects of your working environment.
Topics include setting your own system prompts, defining abbreviations and global
variables, creating command files, sending messages to other users, and setting file
system quotas.

Part II, PROGRAMMING, introduces the basic features of the PRIMOS program
development environment.

• Chapter 9 introduces the program development environment both to experienced and
beginning programmers. The chapter briefly describes the steps of compiling, linking,
running, and debugging programs in high-level languages, and introduces the PRIMOS
subsystems involved in each step.

• Chapter 10 introduces the Prime language compilers, and shows you how to compile
programs.

• Chapter 11 describes two of the Prime linking programs, BIND and LOAD. The chapter
introduces Executable Program Formats (EPFs), the dynamic runfiles created by the
BIND linker, and it shows you how to carry out basic linking operations with BIND and
LOAD.

• Chapter 12 shows you how to run programs interactively at the terminal, and introduces
the dynamic command environment made possible by EPFs.
Chapter 13 provides an introduction to debugging programs with the Prime Source
Level Debugger (DBG).

•

Part III, PRIMOS SYSTEM FACILITIES, describes a variety of PRIMOS system facilities
and features.

•

xii  Fifth  Edition

Chapter 14 describes command output files and command input files. Command output
files allow you to capture terminal output in a file as you work with PRIMOS.
Command input files let you provide PRIMOS command input from a file rather than
from the terminal.
Chapter 15 introduces the Prime Command Procedure Language (CPL) for carrying out
complex operations involving PRIMOS commands. The chapter describes the basic
language  elements  and  shows  you  how  to  write  simple  CPL programs.  ~"
Chapter 16 shows you two ways to run programs without tying up your terminal:
phantoms and the Batch subsystem.
Chapter 17 tells you how to use file-handling utilities to sort, compare, merge, and
concatenate files.
Chapter 18 explains how to use magnetic tapes on a Prime system.
Chapter 19 explains the PRIMENET™ networking facility. Topics covered include
remote file access, remote login, the NETLINK subsystem for communicating with
both Prime and other vendors' remote systems, and the File Transfer Service (FTS) for
transfering files between networked systems.
Chapter 20 shows programmers how to use the PRIMOS condition mechanism to deal
with errors and other program interruptions.



About This Book

A series of appendices provides the following information:

• A glossary of terms used in Prime documentation
• A list of system defaults and constants
• The Prime Extended Character Set
• A list of system error messages
• A summary of ED commands
• A discussion of the password file protection system as an alternative to ACLs
• A table of commands that provide useful system information

Changes in This Edition
Parts I and II of the PRIMOS User's Guide have been substantially rewritten for this edition.
Substantial changes have also been made to many of the chapters in Part III. Revisions reflect
technical changes at Rev. 22.0, elimination of obsolete material, and rewriting to clarify or
amplify existing information. Two completely new chapters have been added; Chapter 7
describes the new Command Line Editor ECL, and Chapter 9 provides a summary
introduction to the PRIMOS program development environment.

Other Useful Books for New Users
For a beginner-level introduction to the PRIMOS operating system, see Introduction to
PRIMOS (DOC10111-1XA). For more detailed information about the topics covered in this
book, see the following:

• PRIMOS Commands Reference Guide (DOC3108-7LA) contains complete information
on format and usage of all PRIMOS user commands.

• New User's Guide to EDITOR and RUNOFF (FDR3104-101 A/101 B) (change sheets
UPD4033-21A and UPD4033-22A)  and EMACS Primer  (IDR6107-183P)  give
information about the two Prime supported text editors.

• CPL User's Guide (DOC4302-3LA) gives complete explanations, both for beginners
and more advanced users, of the Prime Command Procedure Language.

•  User's  Guide  to  Prime  Network  Services  (DOC10115-1LA)  provides  detailed
information about Prime network facilities.

• Advanced Programmer's Guide Series, Vols. 0-II1 (DOC10066-3LA, DOC10055-1LA
and update UPD10055-11A, DOC10056-2LA, DOC10057-1LA),  gives detailed
information about PRIMOS and programming for systems programmers.

Other books referred to in this book are

• Subroutines Reference I: Using Subroutines (DOC10080-2LA)
• Subroutines Reference II: File System (DOC10081-1LA) (updates UPD10081-11A and

UPD10081-12A)

Fifth  Edition  xiii



PRIMOS User's Guide

Subroutines Reference III: Operating System (DOC 10082-1LA) (updates UPD10082-11A
andUPD10082-12A)
Subroutines Reference TV: Libraries and I/O (DOC10083- 1LA) (updates UPD10083-11A
andUPD10083-12A)
Subroutines Reference V: Event Synchronization (DOC10213-1LA)
Source Level Debugger User's Guide (DOC4033-193L) (updates UPD4033-21A,
UPD4033-22A, and UPD4033-23A)
EMACS Reference Guide (DOC5026-2LA)
Programmer's Guide to BIND and EPFs (DOC8691-1LA) (update UPD8691-11A)
SEG and LOAD Reference Guide (DOC3524-192L) (update UPD3524-21A)
MAGNET User's Guide (DOC10156-1LA) (update UPD10156-11A)
FORTRAN 77 Reference Guide (DOC4029-5LA)
Data Backup and Recovery Guide (DOC10129-1LA) (update UPD10129-11A)

For a complete listing of Prime documentation, see the Guide to Prime User Documents
(DOC6138-6PA). Each listing in the guide includes a description of the book, its printing
history, and its intended audience.
An up-to-date cumulative listing of manuals, updates, and programmer's companions is
available online whenever you are logged in to PRIMOS by typing HELP DOCUMENTS.

Prime Documentation Conventions
The following conventions are used in command formats, statement formats, and in
examples throughout this document. Examples illustrate the uses of these commands and
statements in typical applications.

Convention  Explanation

UPPERCASE In command formats, words in upper
case bold indicate the names of com
mands, options, statements, and key
words. Enter them in either uppercase
or lowercase.

Example

SLIST

italic In command formats, words in lower
case bold italic indicate variables for
which you must substitute suitable val
ues. In text and in messages, variables
are in non-bold lowercase italic.

LOGIN user-id

Supply a value for
x between 1 and 10.

Abbreviations If a command or option has an abbre-
in  format  viation,  the  abbreviation  is  printed  in
s t a t e m e n t s  r e d .

SET_qUOTA

xiv  Fifth  Edition



Convention

Brackets
[  ]

Braces
{  }

Braces within
brackets

[{)]

Braces enclose a list of items. Choose
one and only one of these items.

About This Book

E x p l a n a t i o n  E x a m p l e

Brackets enclose a list of one or more
optional items. Choose none, one, or LD
several of these items.

-BRIEF"!
SIZE J

CLOSE {̂ L_flmC}

Braces within brackets enclose a list of
items. Choose either none or only one BIND
of these items; do not choose more
than one

j  fpathname\  !I  \options  J

Vertical bars

Parentheses
(  )

User input
in examples

Ellipsis

Hyphen

Subscript

Key symbol

Vertical bars enclose a list of items.
Choose one or more of these items.

In command or statement formats, you
must enter parentheses exacdy as
shown.

In examples, user input is printed in
red but system prompts and output are
not

An ellipsis indicates that you have the
option of entering several items of the
same kind on the command line.

Wherever a hyphen appears as the first
character of an option, it is a required
part of that option.

OUTPUT filename
TTY

In examples and text, the name of a
key enclosed by a rectangle indicates
that you press that key.

DIM array (row, col)

OK, RESUME MY_PROG
This  is  the  output
Of  MY_PROG.CPL
OK,

SHUTDN pdev-1
[..j>dev-n]

SPOOL -LIST

A subscript after a number indicates 2008
that the number is not in base 10. For
example, the subscript 8 is used for
octal numbers.

Press I Return

r
r Fifth  Edition  xv



Part I: PRIMOS Basics



Getting Started

r
r

You can use a Prime computer in many ways, but you use a few basic procedures every time
you work at the terminal. This chapter explains the fundamental things you need to know to
get started using a Prime computer. The topics covered include

• An overview of the PRIMOS operating system
• The terminal
• The PRIMOS command line
• Essential PRIMOS commands

Some details vary from system to system, but this chapter provides enough information so
that any user can get started. Whenever important differences exist between systems, the text
directs you to sources of more complete information.

Note
This chapter introduces the PRIMOS operating system to users with some previous computer
experience. If you are a computer beginner, consult Introduction to PRIMOS first for an
elementary level tutorial. Once you are familiar with the material covered in Introduction to
PRIMOS, use the PRIMOS User's Guide as an intermediate level guide.

The PRIMOS Operating System
PRIMOS is the operating system used by all 50 Series™ computers. An operating system is
a program that manages the hardware and software resources available in a computer system.
PPJMOS has three basic tasks:

• PRIMOS controls hardware. PRIMOS acts as an insulating layer between users and the
mechanics of devices, such as the central processing unit, memory, storage devices
(such as disk drives), and input and output devices (such as terminals and printers). For
example, when you use a text editor program to create and store a document on disk,
neither you nor the text editor needs to worry about the actual mechanics of putting the
data on the disk. When you ask the editor to save your document, the editor in turn asks
the operating system to direct the complex hardware operations required.

Fifth  Edition  1-1



PRIMOS User's Guide

• PRIMOS manages software. PRIMOS runs programs for users and organizes data in the
PRIMOS file system. When you want to run a program, for example, PRIMOS takes
care of fetching the program from storage, allocating memory space for it, and initiating
its operation. When you save a file on disk, the file becomes part of the PRIMOS file
system so that you can easily retrieve it for further use.

• PRIMOS shares system resources among users. PRIMOS manages both hardware and
software resources so that different users and tasks can share them efficiently and
without interference. For example, PRIMOS provides each user with a private memory
space that no other user has access to. Much of the time PRIMOS allows you to work
with the computer as if it were yours alone, even though many other users may be
working at the same time. Depending on the central processing unit, PRIMOS can
support as many as 960 simultaneous users.

Three features of PRIMOS are especially important to users:

• The user interface
• Compatibility
• Network connections

The User Interface
You ask PRIMOS to carry out specific tasks by giving commands at the terminal. The
PRIMOS user interface is flexible; it allows you to give commands and carry out work both
interactively and non-interactively.

Using PRIMOS Interactively: You communicate with PRIMOS principally by means of
an interactive dialog carried out at your terminal. You type one or more commands to
PRIMOS, and PRIMOS immediately attempts to carry them out. PRIMOS informs you when
it completes each task or lets you know that problems have arisen. Many commands also
cause PRIMOS to send further output to your terminal. If you ask PRIMOS to list the names
of some files, for example, PRIMOS responds by writing the list to your terminal screen. The
process is interactive because you can tailor your commands to the responses from PRIMOS.

Other Ways to Use PRIMOS: Sometimes you may find it convenient to use PRIMOS
with little or no terminal interaction. PRIMOS provides several ways to do this:

• Command input files and Command Procedure Language (CPL), let you store a
series of PRIMOS commands in a file. With CPL you can also include special
directives to control command execution. You can use command input files and CPL to
save frequentiy used command sequences and submit them to PRIMOS for execution
when you need them.

• Batch processing allows you to submit a series of commands that the computer
executes when it has the time and resources to carry them out efficiently. After you
submit them, Batch jobs run without terminal interaction, so you can do other work
while you wait for them to finish.

1-2  Fifth  Edition



Getting Started

• Phantom processes run immediately without terminal interaction. You can run
programs as phantoms and then use the terminal for other work while they are running.

Most work with PRIMOS is interactive. In fact, you need to give PRIMOS commands
interactively in order to use any of the non-interactive procedures.

Compatibility
PRIMOS is designed specifically to work with 50 Series computers, and the 50 Series
hardware is tailored to run PRIMOS with maximum efficiency. You use exactly the same
operating system commands and features on all 50 Series machines. You can run programs
created on one 50 Series computer on other 50 Series machines with little or no modification.
Upward compatibility is complete; you can always run software created on one 50 Series
machine on other machines with equal or higher memory capacity. Downward compatibility
is also high; you can run software on machines with smaller memories as long as you observe
constraints on program size and compilation mode.

Networks
PRIMOS users can have access to the resources of more than one computer when computers
are linked together with Prime network hardware and software. PRIMOS supports a variety
of local and wide area networks.

Local Area Networks: Local Area Networks (LANs) link nearby computers together
over direct lines. Prime computers can be connected together in three types of LANs,
illustrated in Figure 1-1.

• The RINGNET™ network connects several computers together in a ring configuration.
Each user terminal is connected directly to one of the computers on the ring.

• The Prime LAN300 connects both user terminals and computers to a single shared
communication line.

• Point-to-point connections can tie together networks as well as single computers.

In each case, PRIMENET™ software gives you transparent access to disk files throughout
the network. You can use files on other machines on the network in the same way you use
files located on the machine you are directiy connected to. PRIMENET and other Prime
software also allow you to log in to more than one machine in the network.

Wide Area Networks: A variety of Prime hardware and software also gives users access
to the resources of computers linked in wide area networks. Wide area networks connect
machines over long distances using public communication lines. Prime network hardware and
software support widely accepted communications standards so that PRIMOS users can
transfer files among computers and work remotely on both Prime machines and those of
other vendors.

Fifth  Edition  1-3



PRIMOS User's Guide

LAN300

Point-to-point
Connector

Q4130-5LA-3-4

FIGURE 1-1
Prime Local Area Networks

The Terminal
You communicate with PRIMOS using the terminal. You give commands by typing them at
the keyboard, and PRIMOS responds by putting its output on the terminal screen. This
section tells you how to establish a connection between your terminal and the computer.

1-4  Fifth  Edition



Getting Started

Note
Terminals vary a great deal from model to model. The discussion that follows assumes that you
have turned on your terminal and are familiar with the locations of the terminal keys. If you are
not familiar with the basic operations of your terminal, consult the terminal's documentation.
Introduction to PRIMOS includes a general introduction to terminal use for users with little or
no experience.

Connections
Before you can start working at your terminal, you may need to establish a communication
link between the terminal and the computer. If you have a direct connection, you are in
communication with the computer whenever the terminal is turned on. If you have a dialup
(telephone) connection, or if your terminal is connected through the Prime LAN300 local
area network, you need to take certain preliminary steps to establish a communication link.

Dialup Terminals: If you are using a dialup line, consult with your System Administrator
about the procedures required to establish a communications link. On some systems you
merely need to dial in. On others you may, for security reasons, need to go through a more
elaborate procedure. You may also have to set your terminal's communication rate, parity,
and other characteristics to match those of the computer you are connecting with. If your
system has Auto Speed Detect, the computer can match your terminal's communication rate
automatically if you press I Return | several times after establishing the dialup connection. For
further information on remote connections, consult the User's Guide to Prime Network
Services.

LAN300: If you are using LAN300, your terminal is connected through hardware called the
LAN Terminal Server, rather than directly to a specific computer. Network Terminal
Service (NTS) software controls your communication with computers on the network. You
need to tell NTS to connect your terminal to one of the computers on the network before you
can begin to work. Details of this process are noted in the sections, The Command Line, and
Logging In With LOGIN, later in this chapter. The first time you begin to work on a terminal
connected through NTS, you may need to press I Return | several times before you get any
response from NTS. This procedure allows NTS to adjust its communication rate to match
the characteristics of your terminal and to store the information for future terminal sessions.

The User's Dialog With PRIMOS
Once you have established a connection with the computer, your dialog with PRIMOS
consists of two basic elements: prompts and commands. This sections discusses prompts.
The next section shows you how to give commands with the PRIMOS command line.

r
Fifth  Edition  1-5



PRIMOS User's Guide

Prompts
A prompt is a message that PRIMOS puts on the screen to indicate that it is ready to receive
commands. PRIMOS displays two standard prompts:

Prompt  Meaning
OK, Indicates that the most recent PRIMOS command has been successfully executed, and

that PRIMOS is ready to accept another command.
ER! Indicates that PRIMOS was for some reason unable to execute the most recent command

and is now ready to accept another command from the user. The ER! prompt is usually
preceded by one or more error messages indicating the nature of the error. These mes
sages can be cryptic; consult Appendix D for explanations. Many errors are simply
typographical. Others result from either leaving out command arguments (discussed in
the next section) or incorrectly specifying pathnames (discussed in Chapter 2).

Note
The OK, and er! prompts are the PRIMOS default prompts. They are the prompts PRIMOS
uses unless you specify alternate forms. Many aspects of the PRIMOS user environment have
default values mat you can change. Explanations of how to change various defaults are given in
this chapter in the section, Setting Terminal Characteristics With TERM, and in Chapter 8,
Customizing Your Environment.

Prompts are an important element in the user dialog with PRIMOS, because they let you
know when PRIMOS is ready to receive commands from the terminal. While PRIMOS is
executing other interactive commands, it can't accept commands from the terminal. A prompt
doesn't appear until PRIMOS is ready to accept another command.

Type-ahead: If you type commands before a prompt has appeared, PRIMOS simply
stores your input and then processes it when it is ready to accept further commands. This
feature is called type-ahead. Because each character echoes (appears on the screen) as you
type it, output from previous commands may become mixed with the commands being typed
ahead. In these cases PRIMOS can still interpret your commands correctly, but the screen
display may be difficult to read. Type-ahead is limited by the size of the terminal input
buffer, an area of memory that holds characters typed at the terminal. The terminal input
buffer has a default capacity of 192 characters.

Note
If you use the Command Line Editor (ECL), PRIMOS redisplays the typed ahead command line
after the next prompt, just as if you had waited for the prompt before typing the command line.
See Chapter 7, Command Line Editor.

System  and  Subsystem  Prompts
Prompts are useful signposts as you work with the PRIMOS operating system. Many of the
programs that run under PRIMOS are also interactive; they also put prompts on the screen
and expect commands from the user. In general, neither the prompts nor the commands are
the same as the PRIMOS prompts and commands. For example, if you are using the text
editor program ED, the error prompt is a question mark (?). This distinction is useful,
because it helps you keep track of where you are in the system. The form of the prompts lets

1-6  Fifth  Edition



Getting Started

you know whether you are communicating directiy with PRIMOS, so that you can give
PRIMOS commands, or are communicating with an interactive program that requires
different commands.

Because they indicate that you are communicating directly with the operating system, the
PRIMOS prompts are called system prompts to distinguish them from the prompts used by
programs that run under PRIMOS. The OK, and ER! prompts (or whatever you have
changed them to) are signals from a section of the PRIMOS operating system called the
command processor  that  it  is  ready to  process a  user  command.  When you are
communicating directiy with PRIMOS via the command processor, you are said to be at
PRIMOS command level or system level. Interactive programs such as ED that ran under
PRIMOS are often called subsystems. The different prompts thus indicate whether you are at
command level or in a subsystem.

The Command Line
Once you receive a system prompt, you communicate with PRIMOS by entering a command
line at the terminal. This section describes command line format and shows you how to use
special keys and characters to modify command lines and carry out other functions.

r

r
r

Command Line Format
A command line consists of one or more PRIMOS commands and any appropriate
arguments, options, symbols, and punctuation. The format of the PRIMOS command line is
the same for all commands:

COMMAND [argument [...argument]] [-OPTION argument [...-OPTION argument]]

Term
COMMAND

argument

Meaning
Specifies a PRIMOS command. Command names often have both long and
short forms, either of which can be used in the command line. In mis book,
the short form is indicated by a portion of the long form given in red text. For
example, the command

LOGOUT

can be typed either as

OK,  LOGOUT

or as

OK,  LO

Identifies an element to be acted upon by the command. Arguments are
usually the pathnames of files or directories (explained in Chapter 2) or
identifying names such as a user ID (explained below). Not all commands
take arguments, and some commands can be given with or without arguments.

Fifth  Edition  1-7



PRIMOS User's Guide

You can modify a command line at any point before you type | Return |, because PRIMOS
doesn't begin to process your command line until you type I Return |. You can modify
command lines in two ways: with the PRIMOS erase and kill characters, or with the
command line editor.

PRIMOS Erase and Kill Characters: PRIMOS defines two characters that you can use
to make simple modifications to command lines before you type I Return |.

C h a r a c t e r  M e a n i n g
[  I  The  default  erase  character.  [3]  does  not  actually  erase  any  characters  from

your screen, but when PRIMOS processes the command line, each |3]
removes a preceding character from the current line. Erasure is from right (the
most recent character) to left. Two Pis erase two characters, three erase three,
and so forth. The PRIMOS command TERM (described in the next section)
allows you to choose a different erase character, such as | Backspace], in order
to make corrections more convenient and easier to read.

PH The default  kill  character.  Each  \T\  removes  all  preceding  characters  on  the
line when PRIMOS processes the command line. The kill character can also
be modified with the TERM command.

You can use these erase and kill characters both at PRIMOS command (system) level and in
many subsystems. The prompts and commands are different, but the mechanics of typing and
modifying commands are essentially the same at all levels of the system. When you give
commands to ED, for example, the I Return |, erase, and kill characters work exactly as they do
at PRIMOS command level.

The Command-line Editor: The default procedures are adequate for editing PRIMOS
command lines when you give short, simple commands. With long command lines or many

-OPTION Specifies an optional term that modifies the action of the command. Not all
commands take options; a list of possible options is documented with each
command that takes them. Some options also take arguments. Option names
always begin with a hyphen (-).

Not all elements are present in every command line, but the order of elements is always the
same: the command name, followed by any arguments, followed by any options.

You can place several commands on a single command line, separated by semicolons:

COMMAND [arg] [-OPTION] ; COMMAND [arg] [-OPTION] ; ... COMMAND ...

PRIMOS accepts command lines with a maximum of 160 characters.

You must type commands either in their full or abbreviated forms exactly as they are shown
in the command descriptions. You must end all command lines by typing | Return |. | Return |
may also be called | cr j (Carriage Return), or | Enter | on some terminals.

Modifying and Editing Command Lines

1-8  Fifth  Edition



Getting Started

repetitions of the same or similar commands, you may want to use the PRIMOS commmand-
line editor, EDIT_CMD_LINE (ECL). You use ECL at PRIMOS command level to modify,
delete, and insert text in the current command line as well as to recall, modify, and reissue
previously entered command lines. The features of ECL are not yet available in most
subsystems. ECL is documented in Chapter 7.

Control Key Characters
You normally communicate with PRIMOS by means of the command line after a prompt.
Sometimes you need to communicate with PRIMOS before it has completed its current task
and given you a prompt. Three special key combinations serve this purpose. To use them,
press the Control key 1 ctri | simultaneously with another keyboard character.

K e y s  F u n c t i o n
I Ctrl | |~p"| Immediately halts whatever command is currendy executing and returns you to

PRIMOS command level. QUIT appears on your screen. | Ctrl | [p~| allows you to
escape from a command or program that is not functioning as desired, although it
may leave files open and have other undesirable effects. Commands to clean up after
a command is halted with [ Ctrl | [p~| are given in Chapter 3. If the | Break | key is
enabled at your terminal, it may also function like | Ctrl | |"pl

1 Ctrl | [~s~| Halts output to the terminal. This is useful when terminal output longer than a single
screen is scrolling (disappearing off the top of the screen) faster than you can read it.
In order to function, | Ctrl | ps] must be activated by the TERM -XOFF command
documented in the next section.

I Ctrl | |~o] Resumes output to the terminal following a | Ctrl | \~s] if these functions have been
activated with TERM -XOFF.

These control key combinations function both at the PRIMOS command level and in many
subsystems.

PRIMOS Reserved Characters
PRIMOS reserves a set of keyboard characters for special uses. Do not use them in command
lines except as specifically documented:

, ( ) { } [ ]<> !% ' -  +  '  ~ : l ; ? " \ *

Special Characters in Subsystems
Some subsystems define their own special characters for specific purposes. Such special
characters are documented along with the subsystems that use them. Some programs running
under PRIMOS may disable special characters or use them for other purposes. The EMACS
text editor, for example, responds to I ctri | [p] by asking if you really want to halt the
program. This feature prevents you from inadvertently losing text if you accidently type
I ctri | \T\ while using EMACS.

Fifth  Edition  1-9



PRIMOS User's Guide

Essential PRIMOS Commands
You need to know a few basic commands in order to start working with PRIMOS:

C o m m a n d  F u n c t i o n
LOGIN  Identifies  you  as  an  authorized  user  of  the  system  and  allows  you  to

start work.
LOGOUT  Protects  your  work,  closes  your  files,  and  frees  up  space  for  other

users when you finish working.
CHANGE_PASSWORD Allows you to select a secret password to protect your work.
TERM  Sets  terminal  characteristics,  allowing  you  to  customize  many  aspects

of your working environment.
HELP  Gives  information  on  PRIMOS  commands.

Logging  In  With  LOGIN
In order to start working with PRIMOS you have to log in. Logging in identifies you to
PRIMOS as an authorized user. When you log in, PRIMOS sets aside system resources for
you and gives you access to the system. You log in with the LOGIN command. Until you
have successfully logged in, the command processor cannot process any other PRIMOS
commands you give.

User IDs and Passwords:  In order to log in,  you need a user ID and possibly a
password. Your System Administrator issues you a user ID and, if necessary, a password
before you log in for the first time.

Note
The System Administrator is a person designated to control may aspects of your system's
operation. One of the System Administrator's tasks is to establish new users on the system.

The user ID is the name by which you are known to your computer system. User IDs can
have a maximum of 32 characters. The first character of the ID must be a letter, and the rest
may be any combination of letters, digits, periods, underscores, and dollar signs. Case does
not matter, because PRIMOS converts lowercase letters to uppercase.

Your system may require a login password to prevent unauthorized access. It may consist of
a maximum of sixteen ASCII characters (listed in Appendix C). It may not include any of the
PRIMOS special keys and reserved characters documented in this chapter. The System
Administrator supplies your password before you log in for the first time. You can change
this password to another one after you log in.

LOGIN Command Format: The simplest format for the LOGIN command is

LOGIN

After you enter this command, the system requests a user ID with the prompt

User  id?

1-10  Fifth  Edition



Getting Started

Type your user ID. If you have a login password, the system requests it with the prompt

Password?

Type your login password. For security reasons, the password does not appear on the screen
as you type it.

Computer Generated Passwords: Some systems may provide computer generated
passwords. If this is the case, you still receive a password from the System Administrator,
but you automatically receive a new computer generated password when you log in for the
first time. When you first log in, you see the following message:

Computer  generated  passwords  are  in  effect.
Please  ensure  that  you  can  view  your  new  password  in  privacy.
Type  RETURN  to  continue:

After you type I Return |, the computer generates a new password for you. For example,

Your  new  password  is  BAGINUC
Reenter  new  password  for  confirmation:
Your  new  password  has  been  confirmed.

Does not appear on screen.

Password Lifetime: Your System Administrator may choose to limit the lifetime of your
password. If this is the case, you need a new password when the old one expires. When your
password has expired, the system notifies you after you log in.
On systems that allow users to choose their own passwords, you can choose any new
password. The following example shows how the system notifies you that your password has
expired and prompts you for a new one:

LOGIN
User  ID?
YOURID
Password:
Your  password  has  expired;  please  change  it.
New  password:

Reenter  new  password  for  confirmation:
Your  new  password  has  been  confirmed.

Type your password as usual.

Type a new password.
It  does  not  appear  on  screen.
Type the new password again.

On systems that provide computer generated passwords, the procedure is as follows:

LOGIN
User  id?
YOURID
Password:
Your  password  has  expired.

Type your password as usual.

Computer  generated  passwords  are  in  effect.
Please  ensure  that  you  can  view  your  password  in  privacy.
Type  RETURN  continue:
I Return I

Fifth  Edition  1-11



PRIMOS User's Guide

Your  new  password  is  N0MANES.
Reenter  new  password  for  confirmation:  The  password  does  not  appear  on  screen.
Your  new  password  has  been  confirmed.

Project IDs: Some systems organize users into specific groups called projects. If your
system uses the project structure, PRIMOS may now request a project ID with the prompt

Project  ID?

Type in your project ID. If you receive a project ID prompt and you do not have a project ID,
see your System Administrator.
You must always provide the system with your user ID. Whether you must supply a
password or a project ID depends upon your installation. Once you have successfully
provided all of the information requested, the login procedure is completed, and PRIMOS
responds as in the following example:

LOGIN
User  id?  FRED
P a s s w o r d ?  T h e  p a s s w o r d  d o e s  n o t  a p p e a r  o n  s c r e e n .
Project  id?  RESEARCH

FRED  (user  13)  logged  in  Wednesday,  14  Dec  88  11:23:28.
Welcome  to  PRIMOS  version  20.0
Copyright  (c)  1988,  Prime  Computer  Inc.
Last  login  Monday,  12  Dec  88  09:49:44.

RESEARCH is the project ID. The number in parentheses is a user number assigned by
PRIMOS. The time is expressed in 24-hour format (hh:mm:ss).

Problems Logging In: If you misspell your user ID or password, you receive the message

Invalid  user  id  or  password;  please  try  again.

If you enter a project ID incorrectly, you receive the message

Invalid  project  id;  please  try  again.

If you or someone else has tried and failed to log in using your user ID, you see a warning
after you log in successfully:

Warning!  There  were  3  failed  attempts  to  log  in  under  this  id  since
the  last  successful  login.

This is a security measure, designed to let you know if an unauthorized person has attempted
to log in with your user ID.
If you repeat the login process and still have trouble, ask your System Administrator for help.
If the system is already being used to capacity, a message such as maximum number of
users exceeded may be displayed. In this case, try to log in again later, when some other
user may have logged out.

1-12  Fifth  Edition



Getting Started

Alternate Form of the LOGIN Command: You may also enter arguments and options
on the same line as the LOGIN command (although for security reasons your System
Administrator may disallow passwords on the login line). The format is

LOGIN [user-id [login-password]] [-PROJECT project-id]

Argument/Opt ion  Descr ipt ion
user-id  Your  user  identification  name.
login-password  Your  password  may  be  included  on  the  login  line  if  your  system

allows it.
-PROJECT project-id Your project ID associates you with a particular project.

If you give your login password on the command line, you must also include your user ID.
For example,

LOGIN FRED NIX

FRED  (user  13)  logged  in  Wednesday,  14  Dec  88  12:27:21.
Welcome  to  PRIMOS  version  20.0
Copyright  (c)  1988,  Prime  Computer  Inc.
Serial  #
Last  login  Monday,  12  Dec  88  11:23:28.

Logging In With LAN300: If your terminal is connected to the Prime LAN300 local area
network, you need to establish a connection with one of the computers on the network before
you can log in. You do this by giving the NTS CONNECT command after you switch your
terminal on. To use the CONNECT command, you need to know the name of the system you
are logging in to. If you don't know, ask your System Administrator.
The following example shows how to use the NTS CONNECT command. Suppose you want
to log in to a system called SYSA. After turning on your terminal, you see the NTS prompt:

CMDl

If the prompt doesn't appear right away, you may need to press I Return | several times. Once
you see the prompt, type

CMDl CONNECT SYSA

to establish a connection. The system responds with

SYSA CONNECTED

Now you can log in using the PRIMOS LOGrN command, as explained above.

Fifth  Edition  1-13



PRIMOS User's Guide

Assigning or Changing Your Login
Password With CHANGE_PASSWORD
After  you  log  in,  you  can  change  your  current  login  password  with  the
CHANGEJPASSWORD command. The format is

CHANGE_PASSWORD old-login-password

On systems that allow users to choose their own passwords, the system requests the new
login password with the prompt

New  password?

As usual, the new password does not appear on the terminal as you type it. The system
requests the new login password a second time, for verification, with the prompt

Reenter  new  password  for  confirmation:

PRIMOS displays an appropriate error message if the old password is incorrect, the two new
passwords entered do not match, or the format of the new password is illegal. In any of these
cases, the old password is not changed.
An example of CHANGE_PASSWORD follows:

O K ,  C H A N G E _ P A S S W O R D  N I X  T h e  o l d  p a s s w o r d  i s  N I X .
N e w  p a s s w o r d ?  N e w  p a s s w o r d  d o e s  n o t  a p p e a r  o n  s c r e e n .
Reenter  new  password  for  confirmation:
OK,

On systems that use computer generated passwords, CHANGE_PASSWORD causes the
computer to generate a new password for you. For example,

OK, CPW

Computer  generated  passwords  are  in  effect.
Please  ensure  that  you  can  view  your  password  in  privacy.
Type  RETURN  continue:
I Return I
Your  new  password  is  CUNUJEH.
Reenter  new  password  for  confirmation:  The  password  does  not  appear  on  screen.
Your  new  password  has  been  confirmed.

Completing a Work Session With LOGOUT
When you finish a session at the terminal, give the LOGOUT command. The format is

LOGOUT

PRIMOS acknowledges the command with the following message:

user-id  (user  number)  logged  out  weekday,  date  time.
Time  used:  xxh  xxm  connect,  xxm  xxs  CPU,  xxm  xxs  I/O

"^^v

"

1-14  Fifth  Edition



Getting Started

The various parts of this display have the following meanings:

Term
user number
time
xxh  xxm  connect

xxm xxs CPU
xxm  xxs  I/O

For example,

Description
The number assigned to you at LOGIN
Time of day expressed in 24-hour format (hh:mm:ss)
The amount of elapsed clock time between LOGIN and LOGOUT,
in hours and minutes
Central processing unit time consumed, in minutes and seconds
The amount of input/output time used, in minutes and seconds

LO

FRED  (user  13)  logged  out  Wednesday,  14  Dec  88  13:52:20.
Time  used:  Olh  22m  connect,  01m  14s  CPU,  03m  35s  I/O.

It is good practice to log out after every session. Logging out closes all files and makes room
on the system for another user. Logging out also protects your files and directories against
unauthorized access by someone who comes across an unattended, but logged in, terminal.

However, if you forget to log out, the system automatically logs out your unused terminal
after a time delay. This delay is set by the System Administrator. The default is 1000
minutes, but most System Administrators lower this value.

r

Setting Terminal Characteristics With TERM
You can modify several important aspects of your working environment by changing
terminal characteristics with the TERM command. These characteristics remain in effect until
you reset them or until you log out. The commonly used TERM options are listed below.
Typing TERM with no options causes PRIMOS to print a list of all available TERM options.
The format is

TERM options

The common options are

Option
-ERASE character

-KILL character

-BREAK  {Z}

-XOFF

Function
Replaces the default Q erase character with one chosen by the user.
character is the new erase character.
Replaces the default \T\ kill character with one chosen by the user.character is the new kill character.
Enables or disables use of | Ctrl | \T\ as a break character, to inter
rupt a running program or command. The default setting, normally
enabled at login, is -BREAK ON.
Enables the XOFF/XON feature, which allows users to suspend and
resume terminal output with | ctri | [s~| and | ctri | [~a~]. Also sets the
terminal to full-duplex to activate echo.

Fifth  Edition  1-15



PRIMOS User's Guide

-NOXOFF  Disables  the  XOFF/XON  feature  and  sets  terminal  to  full-duplex.
This is the default, normally enabled at login.

-DISPLAY  Displays  currendy  set  erase  and  kill  characters,  duplex,  break,  and
XON/XOFF status.

For example, if you want to change the erase character from double quote to backslash, give
the following command:

OK,  TERM  -ERASE  \

Many users change the erase and kill characters to nonprinting characters such as | Backspace |.
This makes corrections more readable, because | Backspace | and other nonprinting keys can
actually move the cursor so that you can type over the erroneous part of the command line. To
make this change, type the TERM command in the normal way, pressing the chosen key after
the word -ERASE or -KILL. For example, to change the erase character to | Backspace | type

OK,  TERM  -ERASE  |  Backspace  |

| Backspace j does not appear on the screen when you type it, but PRIMOS recognizes it as the
new erase character.

Other TERM options are discussed in the PRIMOS Commands Reference Guide.

Requesting Information With HELP
If you need information about PRIMOS while you are logged in, you can often get it online
with the HELP command. HELP gives you access to information about PRIMOS commands,
groups of commands, and other PRIMOS topics. Its format is

HELP [name]

name is the name of the command or topic on which you wish information, name may be a
command abbreviation. PRIMOS responds by printing a discussion of the command or topic
you have chosen. References to further information and the date that the HELP information
was written or updated appear at the end of the discussion. If you omit name, PRIMOS
displays a list of available commands and topics with a descriptive phrase for each.

1-16  Fifth  Edition

- » >

~

"



Getting Started

For example,

OK,  HELP  ORIGIN
O R I G I N  R e t u r n s  t o  o r i g i n  d i r e c t o r y

Abbrev ia t ion :  OR

ORIGIN

The  ORIGIN  command  changes  the  user's  attach  point  to  his  origin

directory  ( ini t ial  attach  point).  I t  takes  no  arguments.

For  further  information,  see  the  Primos  User's  Guide.

October  198  8
OK,

Fifth  Edition  1-17



The PRIMOS File System

PRIMOS organizes information stored on disk in the PRIMOS file system. The file system is
designed to make it easy to store, retrieve, and modify information while protecting it from
accidental damage. This chapter explains the basic structure of the file system.

Note
Subsequent chapters describe the most important PRIMOS commands for working with the file
system, show you how to create and print text files, and explain how you can protect file system
objects. Taken together, Chapters 2 through 5 provide a detailed introduction to the PRIMOS
file system. For a technical description of the file system, see the Advanced Programmer's
Guide, Vol. 3: The File System.

File System Objects

r

The basic unit of the PRIMOS file system is the file system object. A file system object is a
collection of information identified by an objectname. File system objects are classified into
four types according to their function within the PRIMOS file system:

•  File
•  Directory
• Access category
• Segment directory

In practice, these types fall into two broad categories.

Files
A PRIMOS file is an organized collection of information identified by a filename. The
contents of a file can be anything that a computer is capable of storing: text, such as
documents or source programs; binary information, such as compiled object files; and all
kinds of numeric and alphabetic information, such as the files created by database
management systems. Much of the information in this book deals with commands and
subsystems that create, modify, or process files of various types.

Fifth  Edition  2-1



PRIMOS User's Guide

Directories, Access Categories, and Segment Directories
These special files contain information related to the organization and use of the file system
itself.

Directories: A directory is a special fde that contains a list of names of other file system
objects, information about their characteristics (such as date and time last modified), and
information that PRIMOS can use to locate them. In effect, a directory functions as an index
to a group of file system objects.
Directories can also contain information about other directories so that the file system has a
hierarchical structure. One directory can list several more directories, each of which can list
further directories and files, and so on. This organization of the PRIMOS file system, called
a tree structure, is further discussed in the next section.

Access Categories: An access category is a special file that PRIMOS uses to determine
what access rights a user or group of users has to a given file system object or set of objects
in the PRIMOS file system. Your access rights to an object determine the kinds of
operations, such as reading, modifying, or deleting, that PRIMOS allows you to carry out on
the object. If your System Administrator permits, you can set up access categories to protect
your own files. Access categories and the PRIMOS file protection system are discussed in
detail in Chapter 5.

Segment Directories: A segment directory is a specialized directory that the PRIMOS
SEG utility uses to store information about segmented binary code. Some data management
systems also use segment directories to organize information. Segment directories are not
discussed in this book. See the Advanced Programmer's Guide, Vol. II and the LOAD and
SEG Reference Guide for more information.

Figure 2-1 shows the symbols used in this book to illustrate the file system objects.

A c c e s s  C a t e g o r y  D i r e c t o r y  F i l e  S e g m e n t  D i r e c t o r y

Q4130-5LA-U-0

FIGURE 2-1
File System Object Symbols

2-2  Fifth  Edition



7/7e PRIMOS File System

Storage of File System Objects
The PRIMOS file system provides a conceptual structure for storing, retrieving, and
manipulating file system objects so that you normally don't need to know about the physical
details of storage. PRIMOS stores file system objects on magnetic disks and brings them into
memory when they are needed. The file system associates every object with an objectname
so that you can manipulate objects using their names without having to know anything about
the physical locations of the objects. The major exception to this rule occurs when files are
copied to magnetic tape for backup or long term storage. If you wish to use a file on tape,
then you, the computer operator, or the System Administrator needs to know which tape the
file is on, and must choose a tape drive to read the tape. Tape operations are discussed in
Chapter 18.
PRIMOS stores files in a variety of formats, called file types. Differences among file types
are not generally visible to users carrying out operations documented in this book. Ftie types
are discussed in the Advanced Programmer's Guide, Vol. II.

Naming File System Objects
Characters in an Objectname
Each file system object (file, directory, segment directory, or access category) is identified by
an objectname (sometimes called an entryname) . An objectname may be from 1 through
32 characters in length, and may contain only the following characters:

A through Z
0 through 9
_ # $ - . * & /

On some devices underscore (_) prints as a backarrow (<—). You can type objectnames using
either uppercase or lowercase, but PRIMOS always converts them to uppercase. The first
character of an objectname cannot be a digit. Avoid objectnames that begin with

_  &  $-  .

as well as the objectname * because these characters have special meaning for some
commands and subsystems and may cause confusion if used arbitrarily.

The Objectname Suffix
Objectnames, especially filenames, are customarily divided into two components: a
basename and a suffix. The two components are separated by a period (.) in the objectname.
The following examples show legal PRIMOS objectnames:

MYFTLE.MSS
PROGRAM.FTN
SAMPLE2.RUN
LETTERS .AUGUST
MANUSCRIPTS

Fifth  Edition  2-3



- * *

PRIMOS User's Guide

The first four examples are divided into basename and suffix. In these examples .MSS, .FTN,
.RUN, and .AUGUST are the suffixes. An objectname may contain as many as 16
components, separated by periods. However, only the final component is considered to be the
suffix. Names with more than three components are not recommended.

Suffix Conventions
When choosing objectnames, use a basename that gives some useful information about the
contents of the object, and use a standard suffix that identifies the object's function. Some
Prime programs that operate on file system objects create or expect to find objects with
specific suffixes. Commonly used objectname suffixes that are recognized by Prime software
include the following:

S u f fi x  M e a n i n g
.compiler-name Program source file. For example, a FORTRAN source file uses the filename

suffix .FTN. A full list of compiler-name suffixes is given in Chapter 10.
.LIST  Listing  file  created  by  a  compiler.
.RUN  Runfile  created  by  BIND.
.SAVE  Runfile  created  by  LOAD.
•SEG  Segment  directory  created  by  SEG.
. C P L  C P L  fi l e .
•ACAT  Access  category.

Other common user suffixes, not recognized by Prime software but recommended to make
your file organization easy to understand, include

Suffix Meaning
.ABBREV Abbreviation file.
.COMI Command input file.
.COMO Command output file.
.GVAR Global variable file.
.PH Phantom command file.
.RUNI RUNOFF source (input) file.
.RUNO RUNOFF output file.
.T Temporary file.

You can differentiate groups of related objects by their filename suffixes. For example, if
you write a FORTRAN program called PROGRAM 1, the source file is normally called
PROGRAM1.FTN; the binary file produced by the compiler, PROGRAMl.BIN; and the
executable file, PROGRAM1.RUN or PROGRAM 1. SAVE. In cases where no standard
suffix exists, you can choose a suffix to distinguish an object from others with similar
names. For example, you could use the names

LETTERS.AUGUST
LETTERS.SEPTEMBER

for two directories listing files of letters.

2-4  Fifth  Edition



The PRIMOS File System

These naming conventions help you to keep track of the contents of objects in your
directories. They also allow you to access groups of related objects by using wildcard
characters (explained in Chapter 6).

The File System Tree Structure
PRIMOS organizes file system objects in a hierarchy called a tree structure. In the tree
structure, directories can list the names of other directories, which can in turn list the names
of further directories, and so on. This creates a branching structure like a tree. Figure 2-2
shows an example of a file system tree.

Q4130-SLA-31-5

FIGURE 2-2
A PRIMOS File System Tree

PRIMOS organizes this structure with three classes of directories, each of which occupies a
different position in the hierarchy.

Fifth  Edition  2-5



PRIMOS User's Guide

• Master File Directories (MFDs) are at the highest level. PRIMOS divides available
disk storage space into logical disks (also called disks, partitions, or disk volumes),
and each logical disk has an associated MFD that lists the volume's contents. A logical
disk is assigned to one or more physical disk surfaces on a disk storage device, but the
file system treats a logical disk as a unit and associates it with a single MFD.

• Top-level directories occupy the next level. Usually, the System Administrator assigns
a top-level directory to each user. Often projects and groups of users have their own
top-level directories as well. Other top-level directories are used for system software.
The MFD lists all of the top-level directories on a given logical disk.

• Subdirectories are directories created by users within top-level directories. Since
subdirectories may contain further subdirectories, users can extend the hierarchical
structure to any useful level.

Users with sufficient access rights can create file system objects of all types in their top-level
directories and subdirectories: files, access categories, segment directories (created by the SEG
utility), and subdirectories. Normally users do not have the right to create objects within an MFD.
A directory that immediately contains a subdirectory is called the parent directory of that
subdirectory.

Pathnames
PRIMOS locates objects within the file system tree structure using pathnames. A pathname
specifies a path through a series of directories and subdirectories to the object in question. An
absolute pathname is one that begins with a disk name, followed by a top-level directory
name and the names of any subdirectories, and ends with the name of the target object.
In many circumstances PRIMOS can find an object using a pathname that does not start with a
disk name. The section, Shortening Pathnames, shows how to create such partial pathnames.

Specifying a Pathname
In an absolute pathname, angle brackets (<>) enclose the disk name. Right angle-brackets (>)
separate the other objectnames from one another. For example,

<FOREST>BEECH>BRANCH5>SQUIRREL

specifies a file called SQUIRREL, in the subdirectory BRANCH5, in the top-level directory
BEECH, on the disk FOREST. Figure 2-3 illustrates how the pathname leads through a tree
of directories and files. (Segment directories and access categories do not appear in this
diagram, although they could be parts of any tree.)
In specifying a pathname, do not include any spaces immediately before or after an angle
bracket. For example,

Correct: <HOUSE>DOOR>KNOB
Incorrect: <HOUSE >DOOR > KNOB

The maximum length of a pathname allowed by PRIMOS is 128 characters.

2-6  Fifth  Edition



The PRIMOS File System

r

BRANCH1 f  LEAF  J  f  BIRD  J

QSQUIRREl)  f  LEAF  J

Q4130-SLA-12.1

FIGURE 2-3
The Pathname <FOREST>BEECH>BRANCH5>SQUIRREL

MFD Pathnames: MFDs are top-level directories on each disk that list the other top-level
directories. An MFD's name is always simply MFD. Therefore, the pathname of an MFD
takes the form <diskname>MFD. For example, the pathname of the MFD on the disk
HOUSE is <HOUSE>MFD. <HOUSE> alone is not a legal pathname, because a pathname
must lead to a directory or other file system object. <HOUSE> specifies the disk name but
does not specify any file system object.

Password-protected Directories: Some directories may have a password associated
with them. When you use a passworded directory in a pathname, you must give the directory
name followed by one blank space and the password:

directoryname password

You must also enclose the entire pathname in single quotation marks. For example, if the
password KEY is associated with the directory DOOR, specify a pathname including the
directory DOOR in the following form:

'<HOUSE>DOOR KEY>KNOB'

Fifth  Edition  2-7



PRIMOS User's Guide

Spaces are permitted in a pathname only between a directory name and its password.

Note
The ACL protection system, explained in Chapter 5, is normally used instead of the directory
password system. ACLs make pathnames with passwords and quotation marks unnecessary.
More information on directory passwords appears in Appendix F.

Uniqueness of Pathnames
Each pathname must be unique; it must lead to one and only one file. This uniqueness means
that two objects in different directories may have the same objectname, but that objects in the
same directory may not.

Shortening Pathnames
PRIMOS can often find a file system object even if you don't specify an absolute pathname.

Omitting the Disk Name
You can usually specify a pathname without the disk name. In this case the pathname begins
with a top-level directory name. Such a pathname is called a full pathname (or ordinary
pathname, because it is the type of pathname most frequently used).
When you omit the disk name, PRIMOS searches logical disks one after another until it
encounters a top-level directory with the same name as the first element in the pathname. As
long as each top-level directory name is unique throughout all the logical disks, PRIMOS can
always locate the correct top-level directory as it searches the disks.
Disks are searched in the order of their disk numbers. Each disk has a unique disk number.
The disk number associated with each disk name can can be found with the STATUS DISKS
command, described in Chapter 19. The search begins with the lowest numbered disk and
continues to higher numbered disks until the target top-level directory name is found.

Suppose, for example, that a system has logical disks numbered 0 through 61 and that there is
only one top-level directory named BEECH, located on the disk FOREST, which has disk
number 3. You can then give the pathname

<FOREST>BEECH>BRANCH>SQUIRREL

as

BEECH>BRANCH>SQUIRREL

In this case, PRIMOS first searches disks 0, 1, and 2 and then finds the top-level directory
BEECH on disk 3. As long as only one top-level directory is named BEECH, the pathname is
unambiguous.
If the top-level directory name BEECH occurs on more than one disk, PRIMOS may not find
the correct directory. PRIMOS finds the top-level directory BEECH with the lowest disk

2-8  Fifth  Edition



77» PRIMOS File System

number. Although PRIMOS permits a top-level directory name to appear on more than one
disk, System Administrators usually encourage unique top-level names, so that ordinary
pathnames always lead to the right directory.

The Current and Origin Directories
When you work with PRIMOS, you are always attached to a specific directory in the file
system hierarchy. The directory to which you are attached at any moment is called your
current directory.

Relative Pathnames
Your current directory is a point of reference for any pathnames you give PRIMOS. You can
often specify pathnames relative to the current directory, rather than relative to a top-level
directory. Such pathnames are called relative pathnames. Relative pathnames begin with the
symbol *> which stands for everything in the pathname down to and including the current
directory name. For example, when the current directory is BEECH>BRANCH5, the
pathnames

BEECH>BRANCH5>TWIG9>LEAF3

and

*>TWIG9>LEAF3

have the same meaning.
The directory you are attached to when you log in is called your origin directory or Initial
Attach Point (TAP). Your origin directory is a top-level directory or subdirectory that
contains files and directories you frequentiy use. The System Administrator assigns you an
origin directory.
PRIMOS provides commands, documented in the next chapter, that allow you to attach to
other directories after you log in.

Current Disk
When top-level directory names are not unique, you may need to give absolute pathnames.
You can shorten absolute pathnames that begin with the name of your current disk by using
the current disk symbol <*>. Your current disk is the one that contains the directory you are
currently attached to. You can substitute <*> for the name of your current disk at the
beginning of an absolute pathname. For example, if the current disk is <FOREST> then

<*>BEECH>BRANCH5

and

<FOREST>BEECH>BRANCH5

are equivalent.

Fifth  Edition  2-9



PRIMOS User's Guide

Note
Do not confuse <*>, meaning current disk, with *>, which means everything in the pathname
down to and including the current directory.

Pathnames, Objectnames, and PRIMOS Commands
You use objectnames and pathnames frequently as arguments to PRIMOS commands. With
commands that take pathname arguments, you can give either absolute, ordinary, or relative
pathnames. Often you can give an objectname instead of a pathname.

You must give a pathname to refer to objects not in the current directory.
You must give a pathname when the command attaches you to another directory.
You can give an objectname instead of a pathname to refer to objects in the current
directory unless the command attaches you to another directory.

A few commands explicitly require the use of an objectname alone. These requirements are
documented in the command descriptions given in this book.

2-10  Fifth  Edition



PRIMOS File System Commands

This chapter introduces a set of commands that you can use to carry out basic operations on
the PRIMOS file system. Because so much work with PRIMOS involves the file system, you
frequently use these coinmands as you work with other PRIMOS features and subsystems.
The basic file system commands allow you to

• List the contents of a directory (LD)
• Attach to another directory (ATTACH)
• Return to the origin directory (ORIGIN)
• Create new directories (CREATE)
• Examine files (SLIST)
• Rename file system objects (CNAME)
• Copy file system objects (COPY)
• Delete unwanted file system objects (DELETE)
• Protect file system objects from accidental deletion (SET_DELETE)
• Record everything you do during terminal sessions (COMOUTPUT)
• Clean up after I ctri | \T] (RELEASE_LEVEL, CLOSE -ALL)

Note
If you receive the error message Insufficient access rights when you try to execute
one of these commands, see your System Administrator. The command descriptions in this
chapter list the access rights specifically required by each command. Chapter 5 fully explains
access rights.

Examining Directory Contents
You can examine the contents of a directory with the LD command. The simplest format is

LD

r
Fifth  Edition  3-1



PRIMOS User's Guide

In this format, the LD command displays a list of all file system objects in your current
directory. Objects are listed by type in the following order: files, segment directories,
directories, and access categories. Objects within each category are sorted alphabetically.

Suppose, for example, that your current directory is called SMITH. When you give the LD
command, you see a display of the contents of SMITH:

OK, LD

<DISKA>SMITH (LUR access)
32  records  in  this  directory,  163  total  records  out  of  quota  of  500.

7  Files.

A B B R E V  B U D G E T 1  B U D G E T 2  M A I L
L E T T E R  PAY R O L L . I N F O  R E P O RT

3  Segment  Directories.

EXAMPLE.SEG  PROGRAM.SEG  TABULATION.SEG

2  Directories.

S U B 1  S U B 2

2  Access  Categories.

GENERAL.ACAT  LETTER.ACAT

The first two lines of the display give additional information about the directory:

• The first item in the display is the absolute pathname of the directory. In this case the
pathname is <DISKA>SMITH.

• The second item shows your access rights to the directory. In this case you have LUR
access. Access rights are explained in Chapter 5. If the directory is not ACL protected,
(Owner) or (Non-owner) appears. These terms are explained in Appendix F.

• Items on the second line give information about the size of the directory, records
shows the number of records in the directory itself (in this case 32). total records
shows the total number of records in the directory and all the subdirectories below it in
the tree (in this case 163). quota shows the maximum total records permitted (in this
case 500). If the quota is 0, there is no maximum limit. These terms are discussed
further in Chapter 8.

Arguments  and  Options  for  the  LD  Command
The LD command can take objectnames and pathnames for arguments, allowing you to list
the names of specific objects and the contents of directories other than the current directory.
Such arguments usually incorporate wildcards, characters that allow an argument to refer to
a group of objects rather than a single object. Chapter 6 explains the use of wildcard
arguments with the LD command.

3-2  Fifth  Edition



PRIMOS File System Commands

The LD command also allows several options that request additional information about
directory entries, such as user access rights, date and time created, and size. For example, you
can use the -PROTECT option to find out whether files have been protected from accidental
deletion. The -PROTECT option is discussed below in the section Protecting Files From
Accidental Deletion. The PRIMOS Commands Reference Guide gives complete information
about options to the LD command.

Access Requirements
You must have List (L) access to a directory in order to list its contents. If you attempt to use
the LD command on a directory to which you do not have List access, you receive the
message

No  in format ion ,  (cur rent -d i rec tory)  ( Id )

Attaching to Another Directory
Use the ATTACH command to move from your current directory to another directory in the
file system. When you attach to a new directory, it becomes your current directory. The
format of the ATTACH command is

ATTACH new-directory

where new-directory is the pathname of the directory that becomes your new current
directory.
For example, if you want to attach to a directory with pathname <FOREST>BEECH, give
the command

OK, ATTACH <FOREST>BEECH

The ATTACH command always requires either a full, ordinary, or relative pathname
argument. Even when the target directory is within your current directory, you must give at
least a relative pathname. You cannot give the target directory's objectname alone.
For example, if the current directory is the top-level directory CITY, and the target directory
has the pathname CITY>CHICAGO, you must give the ATTACH command as

OK, ATTACH *>CHICAGO

or

OK, ATTACH CITY>CHICAGO

You cannot give the command as

OK, ATTACH CHICAGO

Fifth  Edition  3-3



PRIMOS User's Guide

If you do give the directory name alone, PRIMOS treats it as a top-level directory name. In
the last example above, PRIMOS attempts to attach you to a top-level directory called
CHICAGO instead of to CITY>CHICAGO. PRIMOS does this because it expects a
pathname argument, and a single objectname can only be a pathname for a top-level
directory.
Note that ATTACH is different from most other commands in this respect. With other
PRIMOS commands you can often give an objectname alone, instead of a relative pathname,
when the target object is within the current directory.

Attaching Errors
If PRIMOS cannot attach you to the directory you request, you remain attached to your
current directory.
If an attempt to ATTACH to a subdirectory fails because the directory is not found, PRIMOS
returns the following error message:

Not  found.  directory-name  (ATTACH)

This error often occurs because you have mispelled the directory name or some other part of
the pathname.
An attempt to ATTACH to a top-level directory can fail because the directory does not exist,
because PRIMOS cannot reach the system where it does exist, or because you do not have the
right to attach to it. In any of these cases, PRIMOS returns the following error message:

Top-level  directory  not  found  or  inaccessible,  directory-name  (ATTACH)

If the ATTACH command fails because you don't have sufficient access rights to a
subdirectory, PRIMOS returns the following error message:

Insufficient  access  rights.  directory-name  (ATTACH)

If you give an incorrect password with the ATTACH command for a directory that requires
passwords, PRIMOS returns the following error message:

Bad  Password.  directory-name  (df_unit_)

Access Requirements
To attach to an ACL-protected directory, you must have Use (U) access to it.
To attach to a passworded directory, you must supply any necessary passwords in the
pathname, as in

OK, ATTACH 'BEECH SECRET>BRANCH5'

Pathnames with passwords are described in Chapter 2. For more information on passworded
directories, consult Appendix F.

3-4  Fifth  Edition



PRIMOS File System Commands

Returning to Your Origin Directory
To return to your origin directory, use the ORIGIN command. The format is

ORIGIN

For example, if your origin directory is the top-level directory QUARTET on the disk
<MUSIC>, then the command

OK,  ORIGIN

is equivalent to

OK,  ATTACH  <MUSIOQUARTET

Creating New Directories
Use the CREATE command to create new subdirectories within a directory. By creating new
subdirectories, you can organize your files in the tree structure provided by the PRIMOS file
system. The format of the CREATE command is

CREATE pathname

where pathname may be

• The objectname of a new subdirectory to be created within the current directory
• The pathname of a new subdirectory to be created within some other directory

For example, if your current directory is BEECH, then

OK, CREATE BRANCH6

creates the subdirectory BRANCH6 in the directory BEECH.
Note the important difference between CREATE and ATTACH.

• ATTACH treats an argument that contains an objectname alone as a top-level directory
name.

• CREATE treats such an objectname as the name of a subdirectory to be created within
the current directory.

To create a new subdirectory within a directory other than the current directory, you must
specify either a full, ordinary, or relative pathname. For example, if ELM is a subdirectory of
the top-level directory TREES, then

OK,  CREATE  TREES>ELM>BRANCH1

creates the subdirectory BRANCH 1 in the directory ELM.

r Fifth  Edition  3-5



PRIMOS User's Guide

You can use a relative pathname to create a new directory below your current directory in the
file system tree. For example, suppose your current directory is BEECH. If BEECH contains
the subdirectory BRANCH4, you can create a subdirectory called LEAF within BRANCH4
using

OK,  CREATE  *>BRANCH4>LEAF

Two objects of the same name are not permitted in a directory. If you try to create a
subdirectory with the same name as some other object in the same directory, PRIMOS returns
the following message:

Already  exists.  directory-name  (CREATE)
ER!

Access Requirements
You must have Add (A) access rights to the directory in which you create a new subdirectory.

Note
You can create files in your directories in a variety of ways. You can create and modify text
files, including documents, programs, and data lists, using one of the text editors supported by
PRIMOS: EDITOR and EMACS. Text editors are discussed in Chapter 4. You can create a file
that records your terminal input and output with the COMOUTPUT command discussed below.
Many of the programs and subsystems discussed later in mis book also create files of various
types.

Examining the Contents of a File
You can examine the contents of any text file at the terminal with the SLIST command. The
format is

SLIST pathname

The file specified by pathname is displayed at the terminal. SLIST treats an objectname alone
as a file within the current directory. For example,

OK,  SLIST  LETTER

and

OK,  SLIST  *>LETTER

both display the contents of a file called LETTER (if it exists) in the current directory.

SLIST displays the file by scrolling it continuously on your terminal screen. You can stop
and restart the terminal display using I cm 1 \W\ and I ctri | [p|. as discussed in Chapter 1, as
long as you have previously used the TERM -XOFF command.

3-6  Fifth  Edition



PRIMOS File System Commands

Access  Requirements
To display the contents of a file using SLIST you must have Read (R) access to the file.

Renaming File System Objects
Use the CNAME command to change the name of a file system object. This format is

CNAME old-name new-name

old-name is the pathname of the object to be renamed, and new-name is the new objectname
for the object, new-name must be an objectname; it cannot be a pathname. For example,

OK, CNAME REPORTS>DRAFT FIRSTDRAFT

changes the name of the entry called DRAFT in the top-level directory REPORTS to
FIRSTDRAFT.
If new-name already exists, PRIMOS displays the following message:

Already  exists.  objectname  (CNAME)
ER!

A misspelled old-name, such as DRIFT instead of DRAFT, produces the Not found
message:

OK, CNAME REPORTS>DRIFT FIRSTDRAFT
Not  found.  DRIFT  (CNAME)
ER!

When changing the name of an object in the current directory, you can substitute the
objectname alone for the pathname argument. For example, if you are already attached to the
directory REPORTS, then the coinmands

OK, CNAME *>DRAFT FIRSTDRAFT

and

OK,  CN  DRAFT  FIRSTDRAFT

are equivalent.

Access  Requirements
To change the name of a file system object, you must have Delete (D) and Add (A) access to
the directory that contains it.

Fifth  Edition  3-7



PRIMOS User's Guide

Copying File System Objects
Use the COPY command to copy file system objects, either within the same directory or
from one directory to another. In its simplest form, the format is

COPY pathname [new-pathname]

Argument
pathname

new-pathname

Description
Indicates the name of the object to be copied. The object itself is not removed
from its directory or altered in any way. If the object to be copied is in the
current directory, then you can give the objectname alone instead of the
pathname.
Indicates the pathname of the new copy. If you are copying the object into the
current directory, then you can give the new objectname alone instead of the
pathname. If new-pathname is not specified, the object is copied into the cur
rent directory under its original name. Note, however, that you must give a
new name when copying an object within the same directory, because names
must be unique within a directory.

COPY Examples
In the first example, LETTER is a file in the current directory MAIL. The command

OK, COPY LETTER LETTER.NEW

creates a second copy of LETTER in the directory MAIL under the name LETTER.NEW.
The original file LETTER remains in the directory. Figures 3-1 and 3-2 illustrate the
directory MAIL before and after the COPY command is given.

*  =  Attach  Point
Q4I30-5LA-13-1

FIGURE 3-1
Directory Before COPY Command Is Given

3-8  Fifth  Edition



PRIMOS File System Commands

f

r

*■=  Attach  Point
Q4130-SLA-14-1

FIGURE 3-2
Directory After COPY Command Is Given

A second example illustrates copying from one directory to another. To copy BIRDSNEST, a
subdirectory of BEECH, to the directory TREEHOUSE, use the command

OK, COPY BEECH>BIRDSNEST TREEHOUSE>BIRDSNEST

If you are currently attached to TREEHOUSE, then you can shorten the command to

OK, COPY BEECH>BIRDSNEST

If you are currentiy attached to BEECH, the same operation can be accomplished with

OK, COPY BIRDSNEST TREEHOUSE>BIRDSNEST

Figures 3-3 and 3-4 illustrate the directory BEECH before and after the copy operation
defined by these commands.

Note that copying a directory copies all subdirectories and files within the directory as well.
When you copy a directory, PRIMOS first queries you for permission. For example,

OK  to  copy  directory  "BEECH>BIRDSNEST"  to  "BIRDSNEST"?

Note
If you try to copy a file over another file mat already exists, PRIMOS displays the message

"pathname"  already  exists,  do  you  wish  to  overwrite  it?

If your directory or directory tree does not have enough storage room to hold the object you
wish to copy, PRIMOS displays die message Maximum quota exceeded and does not
execute the copy operation. You need to delete some objects to make room. See the next section,
Deleting File System Objects. See Chapter 8 for further explanation of quotas.

Fifth  Edition  3-9



PRIMOS User's Guide

TREEHOUSE

EGG1

FIGURE 3-3
Directory Before COPY Command Is Given

BIRDSNEST

EGG2  )f  EGG3  J

TREEHOUSE

f  EGG1  J  f  EGG2  J  C  EGG3  J

Q4130-5LA-15-2

BIRDSNEST

^ , A ^ ^ ~ ,
f  EGG1  )  (  EGG2  )  (  EGG3  )

Q4130-5LA-16-2

FIGURE 3-4
Directory After COPY Command Is Given

3-10 Fifth Edition



PRIMOS File System Commands

Options for the COPY Command
The COPY command allows a number of options that affect the copying process. These
options are discussed in the PRIMOS Commands Reference Guide.

Access Requirements
To copy a file, you must have Read (R) access rights to the file. You must also have Add (A)
access rights to the directory containing new-pathname. If an object with the new name
already exists in the target directory, you must also have Delete (D) access to the target
directory, so that the new entry can overwrite the old one.

Deleting File System Objects
When you no longer need file system objects, you can remove them from a directory with the
DELETE command to provide more room for other work. The format is

DELETE pathname

If the object to be deleted is within the current directory, then you can substitute the
objectname alone for pathname. If the object is a directory or an access category, PRIMOS
queries you to double-check that the command is intended for this entry. For example, if
SUBDIR5 is a subdirectory of the current directory then the command

OK, DELETE SUBDIR5

results in the following query from PRIMOS:

OK  to  delete  directory  "SUBDIR5"?

If you want the directory deleted, you must reply with Y or YES. If you reply with N or NO,
the object is not deleted.
If the object specified is not found, PRIMOS returns a Not found message. For example,

OK, DELETE BRANCH23
Not  found.  "BRANCH23"  (delete)

You cannot delete the directory to which you are attached or one of its parent directories. If
you attempt this, you receive a File open on delete or Directory not empty error
message.

Options for the DELETE Command
The DELETE command has several options that tell PRIMOS how to proceed with deletion
activities. These options are discussed in PRIMOS Commands Reference Guide.

Fifth  Edition  3-11



PRIMOS User's Guide

Access
You must have Delete (D) access to the directory containing the object you want to delete.

Note
In order to delete a segment directory or an EPF you also need Write (W) access to the object.

Protecting Objects  From Accidental  Deletion
To  prevent  accidental  deletion  of  a  file,  segment  directory,  or  directory,  use  the
SET_DELETE command. PRIMOS queries you before deleting any object that has been
delete-protected with SET_DELETE. SET_DELETE works only for objects in directories
protected by ACLs.
The format is

SET_DELETE  pathname  [{l^pROTECT  }]

Argument/Option  Descript ion
pathname Names the object  to  be delete-protected.  For  an object  in  the  current

directory, the objectname alone may be substituted.
-PROTECT Causes PRIMOS to query you when you attempt to delete the object.
-NO_PROTECT Removes delete-protection provided by SET_DELETE. This is the

default state in which file system objects are created.

If you give the SET_DELETE command without either option, -PROTECT is assumed and
the object specified is delete-protected.
In the example below, the file IMPORTANT in the current directory is delete-protected. The
DELETE command queries you before deleting the object:

OK, SET_DELETE IMPORTANT -PROTECT
OK, DELETE IMPORTANT
"IMPORTANT"  protected,  ok  to  force  delete?  NO
File  is  delete-protected.  Unable  to  delete  "IMPORTANT"  (delete)
OK,

The same querying occurs if you try to delete a directory that contains protected objects
(even though the directory itself is not delete-protected). For example, assume that your
current directory contains the subdirectory PAPERS and that PAPERS in turn contains the
file IMPORTANT.

OK, SET_DELETE *>PAPERS>IMPORTANT
OK, DELETE PAPERS
Ok  to  delete  directory  "PAPERS"?  YES
"*>PAPERS>IMPORTANT"  protected,  Ok  to  force  delete?  YES
OK,

3-12  Fifth  Edition



PRIMOS File System Commands

If you answer NO to the last query, you receive the following response:

The  directory  is  not  empty.  Unable  to  delete  "PAPERS"  (delete)

In effect, a parent directory is delete-protected if any of the objects it contains is delete-
protected. The converse of this is not true. Objects within delete-protected directories are not
themselves delete-protected unless they have been protected explicitly by SET_DELETE.
For example, suppose that the directory BASKET, containing the files EGG1, EGG2, EGG3,
and EGG4, has been delete-protected with the following command:

OK,  SET_DELETE  BASKET

If you attempt to delete BASKET and the files it contains using

OK,  DELETE  BASKET

you receive a delete-protect query from PRIMOS. However, you can still delete all of the
EGG files individually with

OK,  DELETE  EGG1;DELETE  EGG2;

and so on, without receiving any warning from PRIMOS.

Determining Whether Objects Are Delete-protected
To see whether an object is delete-protected, use the -PROTECT option of the LD command.
The format is

LD -PROTECT

If the object is delete-protected, the letters dprot appear on the information line for the object.
The following example shows the delete-protect status of objects in the current directory
TREES:

OK,  LD  -PROTECT

<FOREST>TREES  (ALL  access)
63  records  in  this  directory,  5779  total  records  out  of  quota  of  0.

6  Fi les,
name a c c e s s  d e l p r o t  t y p e  r b f  p r o t e c t e d

ACACIA
BEECH
CHESTNUT
HEMLOCK
MAPLE
OAK
OK,

ALL sam
ALL sam
ALL sam
ALL sam
ALL sam
ALL dprot sam

(Default  ACL)
(Default  ACL)
(Default  ACL)
(Default  ACL)
(Default  ACL)

In this example, the file OAK is delete-protected.
Fifth  Edition  3-13



PRIMOS User's Guide

Access Requirements
You need Delete (D) access to the directory that contains any object you want to delete-
protect with the SETJDELETE command.

Recording Terminal Sessions
You can make a record of an interactive terminal session with the COMOUTPUT command.
This can be useful when you have problems and want to record the screen dialog to analyze it
or show it to another person. You can also use COMOUTPUT to save the screen output from
a PRIMOS command such as LD. To start recording a terminal session use the command

COMOUTPUT pathname

This creates a file named pathname and starts recording in it whatever you type at the
terminal and whatever responses the system makes to your commands. The commands and
responses continue to appear on your terminal as well.
The file specified by pathname is called a command output or COMO file. The standard
filename suffix for COMO files is .COMO, but you can specify a pathname without this
suffix if you wish.
You can create a COMO file in the current directory by specifying the filename alone instead
of the pathname.
To stop recording material and close the file, give the command

COMOUTPUT -END

Once you have closed the file, you can read it with the SLIST command, edit it with a text
editor, or request a printed copy using the SPOOL command (discussed in Chapter 4).
The following example illustrates the creation of a command output file:

OK, COMOUTPUT SESSION.COMO
OK, LD

<DISKA>BEETHOVEN>QUARTETS (DALURWX access)
54  records  in  this  directory,  54  total  records  out  of  quota  of  0.

3  Files.

E A R L Y  L A T E  M I D D L E

OK, COMO -END
OK,

A file named SESSION.COMO now exists in the current directory. The file contains the
record of all terminal input and PRIMOS output following the COMOUTPUT

3-14  Fifth  Edition



PRIMOS File System Commands

SESSION.COMO  command,  including  the  COMO  -END  command.  Listing
SESSION.COMO with the SLIST command reveals the contents as follows:

OK, SLIST SESSION.COMO
OK, LD

<DISKA>BEETHOVEN>QUARTETS (DALURWX access)
54  records  in  this  directory,  54  total  records  out  of  quota  of  0.

3  Files.

E A R L Y  L A T E  M I D D L E

OK, COMO -END
OK,

The final command, COMO -END, is part of the recorded material, but the initial command,
COMOUTPUT SESSION.COMO, is not.

Note
If a file named pathname already exists, it is normally overwritten by the COMOUTPUT
command. However, you can specify that the new material be placed at the end of an existing
file. For details on this and other extensions of the COMOUTPUT command, see Chapter 14.

Access Requirements
You must have Add (A) access to the directory in which you wish to create a new COMO
file. You must have Write (W) access if you want to overwrite an existing file.

Interrupting Commands
Chapter 1 notes that you can interrupt a command in progress with | ctri | j~p~]. For example,

OK, LD

<DISK>JUDY (ALL)
91  records  in  this  directory,  135  total  records  out  of  quota  of  500.

39  Files.

FILE1 FILE2 FILE3 FILE4
FILE5 FILE6 FILE7 FILE8
FILE 9

| Ctri | l_pj

QUIT.
OK,

Fifth  Edition  3-15



PRIMOS User's Guide

Interrupting programs and commands with I ctri | fp~| can leave files open and may lead to
unwanted results in the behavior of subsequent commands. Use the following commands to
clean up after interrupting a command with I cm | [~P~[;

CLOSE-ALL

and

RELEASE_LEVEL

The first command closes any files the interrupted command may have left open. The second
frees resources for future use. See Chapter 12 for more information on the use of
RELEASEJLEVEL and CLOSE -ALL.

Note
You may be able to restart an interrupted command with the START command. If you want to
restart a command, don't use the CLOSE -ALL or RELEASE_LEVEL commands. See Chapter
12 for information on the START command.

3-16  Fifth  Edition 1>



Creating and Printing Files

Text files are the most widely used PRIMOS files. This chapter shows you how to create and
modify text files with the EDITOR text editor, and how to print them with the SPOOL
command. The chapter also briefly introduces the EMACS text editor.

Text Files

"

~

r
r

Text fdes are files that contain character data. Character data includes letters, numbers, and
other symbols as well as control characters.

Note
Control characters are special characters that often cannot be displayed on a terminal screen or
printed on a printer. Many control characters can be generated by pressing fctT] in combination
with another key at the keyboard. Control characters are often used to control display devices
and printers.

Some examples of text files are

• Documents, manuscripts, and letters
• Program source code
• Data lists and tables

PRIMOS and subsystems often use text files to do their work. For example, a command
input file is simply a text file containing commands that PRIMOS can process without input
from the terminal. (Chapter 14 discusses command input files.) Compilers use text files
containing program source code to create binary files that can be linked, loaded, and executed
by the computer.

Fifth  Edition  4-1



PRIMOS User's Guide

Text  Editors
You can use a text editor to create and modify text files. Prime offers PRIMOS users two
text editors.

• EDITOR is a line-oriented text editor. You use it to create or modify text files one line
at a time. Because EDITOR is tine-oriented, you use it in exactiy the same way on all
kinds of terminals, including line-oriented terminals such as teletypes. The next section
describes the major features of EDITOR and shows you how to use them.

• EMACS, a separately priced product, is a screen oriented text editor. You use it, like a
word processor, to create and modify text by manipulating the text on the terminal
screen. EMACS features include

o Automated search for and replacement of selected text
o Simultaneous editing of several files, allowing transfer of text between files
o User defined macros that allow you to link frequently used key sequences to a single

key
o Special editing modes to simplify the editing of text that must follow specific

formats, such as program source code

EMACS is not extensively documented in this book. See the EMACS Primer and the
EMACS Reference Guide for complete information.

The Editing Process

Editing and Saving: When you use an editor to create a new file, you first create the file
in memory and then save it on disk. When you modify an old file, the editor first copies the
old file from disk to memory where it can be edited. The original version remains intact on
the disk until the text editor copies the new version back onto the disk. In fact, both EMACS
and ED allow you to save the new version of a file without overwriting the old version.
Figure 4-1 illustrates the editing process.
Because editing takes place in memory, you can freely modify text without fear of
destroying or losing the original text. However, this process also means that you must be sure
to save text that you want to keep. If you attempt to quit EMACS or ED without saving new
or modified text, both programs warn you and ask if you want to save the new material
before actually quitting.

The Editing Window: When you are editing a file, both editors provide you with a
window on the file, a section of the file that appears on the screen. In the case of ED, the
window shows you a single line of the file at a time. With EMACS you see several lines at
once, enough to fill most of your terminal screen. Both editors allow you to move the
window backwards and forwards through the file to view different sections. Editing
operations can be carried out on the portion of the file visible in the editing window. Figure
4-2 shows how the editing window displays a portion of the file on the screen.

4-2  Fifth  Edition



Creating and Printing Files

Old
Version

D i s k  M e m o r y

Reading In the File

r
Edited

Version

D i s k  M e m o r y

During  Editing

Edited
Version

D i s k  M e m o r y

Saving the New Version
Q4130-5LA.18-2

FIGURE 4-1
The Editing Process

Fifth  Edition  4-3



PRIMOS User's Guide

~ >

On Screen

THIS IS PART OF YOUR
FILE QH
wmmM

In  Memory

THIS IS THE BEGINNING
OF YOUR FILE I

mm

THIS IS PART OF YOUR
FILE _HBH

Cursor

THIS IS THE END

Editing  Pointer
Q4I30-SLA-17-1

FIGURE 4-2
The Editing Window

Document  Processing
You can use both ED and EMACS with a text formatter, such as RUNOFF, to create
printed documents in a wide variety of formats. To create a document, you first use a text
editor to create a file containing the text and formatting commands. The formatting
commands specify such characteristics as page layout, page headings, type faces, and
document sectioning. The text formatter then processes this file and automatically produces a
second file that contains your text along with printer control information. When this file is
sent to the printer, the printer uses the printer control information inserted by the text
formatter to print a document with the characteristics you have specified.
For example, if you want to underline a section of text in a document to be processed by the
RUNOFF formatter, you insert double braces ({{ }}) around the text. To underline the word
underline, for example, you type {{underline}} in the original text file. RUNOFF
interprets double braces as the command to underline the text. When RUNOFF processes
your file, it inserts printer control codes or other information that cause the printer to print the
word as underline. Information about the RUNOFF text formatter is available in the New
User's Guide to EDITOR and RUNOFF.

4-4 Fifth Edition



Creating and Printing Files

Note
If you have used a word processor, the use of a text editor to prepare documents for printing is
familiar to you. However, ED and EMACS alone are not intended for elaborate document
formatting. For example, they do not provide a way to select type fonts and styles, although
EMACS can be used to format text between margins and in columns on the screen much like a
word processor. For extensive document formatting, you need to use the editors with a text
formatter as explained above.

Using EDITOR

r

You edit a text file with EDITOR (ED) by entering text and giving commands at the
terminal. Because ED is line-oriented, you don't manipulate text on the screen. Instead, you
use ED commands to carry out operations such as deleting lines, searching for strings, and so
on. You can carry out most editing tasks quite efficiently using about 20 commands. This
section explains the most important ED commands. For a complete reference, see the New
User's Guide to EDITOR and RUNOFF.

Invoking ED
To begin editing a file, you invoke ED with the ED command. To create a new file the
format is

ED

To modify an existing file the command is

ED pathname

where pathname is the name of an existing file. If the file is in your current directory, you
can give the filename alone.

Note
The term invoke, as used throughout this book, means to initiate the operation of a program or
subsystem. You invoke subsystems and programs by giving a PRIMOS command (in this case
the ED command). In the case of an interactive subsystem like ED, invoking ED takes you out
of PRIMOS command level and into the subsystem. While you are working in a subsystem, you
can give only the commands recognized by the subsystem. (Commands recognized by a
subsystem are often called subcommands to distinguish them from PRIMOS commands.) This
chapter introduces the basic commands recognized by ED.

ED Modes
When you are working with ED, you give ED two different kinds of input. Sometimes what
you type at the terminal is text to be added to the file being edited; sometimes it is an ED
command, instructing ED to carry out an editing operation such as deleting or moving a line
of text. In order to distinguish between these types of input, ED operates in two modes called
INPUT mode and EDIT mode.

Fifth  Edition  4-5



PRIMOS User's Guide

• In INPUT mode, user input is treated as text and added to the file being edited. When
ED first enters INPUT mode, the word INPUT is displayed at your terminal. When you
begin to edit a new file by invoking ED without a filename, ED starts in INPUT mode.

• In EDIT mode, user input is interpreted as an ED command, and ED responds by
carrying out the editing operation specified. When ED first enters EDIT mode, the word
EDIT appears on your screen. When you start to edit an old file by invoking ED with a
filename, ED begins in EDIT mode.

Switching Modes: You can switch modes at any time by typing a I Return | by itself, not
preceeded by any other characters. You can also use the semicolon character (;) as explained
in the section Special Characters, below. In a typical file editing session, you enter some text
in INPUT mode, switch to EDIT mode to make changes and corrections, return to INPUT
mode to enter more text, and so on. You end the session in EDIT mode, giving ED a
command to save your work in a disk file.

Entering ED Commands and Text
You enter commands and text one line at a time, ending each line with a I Return |. A line that
contains only a I Return | is called an empty line. Empty lines cause ED to switch modes as
described above.

Special Characters: ED allows you to use the PRIMOS erase and kill characters to edit a
line of input before you press I Return |. These characters work exactiy as they do at PRIMOS
command level. If you have changed the PRIMOS erase and kill characters using the
PRIMOS TERM command, then the characters you have selected work under ED as well.
See Chapter 1 for an explanation of the erase and kill characters.

Note
A line that ends with a kill character is treated as an empty line and causes ED to switch modes.

ED recognizes two other special characters in the input line.

Character Description
m ED treats the semicolon as if it were a I Return |. When ED encounters a semicolon in an

input line, it begins a new line. A semicolon without any preceding characters, or pre
ceded by another semicolon, generates an empty line and causes ED to switch modes.
You can use a semicolon in EDIT mode to put multiple ED commands on a single line.

j * j The caret is the ED escape character. The escape character allows you to include charac
ters such as double quotation marks, question marks, and semicolons, which have special
functions, in your input text. When you include an escape character in an input line, ED
treats the following character as part of the text, ignoring any special function it normally
has. The escape character itself does not become part of the text. For example, to include
the line

"speak",  he  said

in your file, type

~"speak^",  he  said

4-6  Fifth  Edition



Creating and Printing Files

To include a caret in your text, type two carets in a row (AA).

Note
A character, such as double quote ("), used as an ordinary text element, rather than
as a special character, is called a literal character. The escape character causes
any following character to be treated as a literal character.

Entering Text in INPUT Mode
Use INPUT mode to create an entirely new file, to add more text to a file that you are
currently editing, or to add text to a file that already exists on disk.

• If you are beginning a new file, enter INPUT mode immediately by invoking ED
without a filename.

• If you are adding new text to a file that already exists, invoke ED with a filename. In
this case ED begins in EDIT mode and you must switch to INPUT mode by typing an
empty line.

• If you are giving ED commands in EDIT mode and you want to add more text to a file,
you must switch to INPUT mode by typing an empty line.

When ED enters INPUT mode it prompts you with

INPUT

You can then begin to type your text.

A Sample File
The following FORTRAN program text illustrates the editing procedures described in this
chapter:

C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

DIMENSION LNUMB (50)
DO  100  1=1,  10

LNUMB  (I)  =1
WRITE  (1,  200)  LNUMB  (I)

200  FORMAT  (10X,  15)
100  CONTINUE

CALL  EXIT
END

To enter this text for the first time, invoke ED without a filename by typing

OK,  ED

ED then prompts you with

INPUT

Fifth  Edition  4-7



PRIMOS User's Guide

Enter the text, ending each tine with I Return |. Use the erase and kill characters to correct any
errors that you notice before you press I Return |. Errors that you don't correct before typing
I Return I must be corrected later in EDIT mode.
When you have entered the text, enter EDIT mode by typing an empty line. (That is, after
typing the last line of the file, type 1 Return | to end the line and then another \ Return | to switch
to EDIT mode.) Once you are in EDIT mode, you can begin to edit the text immediately,
save the text with the SAVE command, or save and quit with the FILE command. (SAVE
and FILE are discussed in the section Ending and Saving, below.)

Working in EDIT Mode
ED provides over fifty commands that you can use to edit your file in EDIT mode, but you
can probably do the majority of your work with the 22 commands introduced in this chapter.
The editing process is an interactive dialog; you type an ED command, and ED responds
either by performing the operation requested or by displaying an error message on the screen
if there is some problem. Editing commands are line-oriented; they operate either on one tine
or a designated number of lines of your text. The mechanics of this process are relatively
simple.

The Current Line: In EDIT mode, ED maintains an internal pointer at one line of your file
called the current line. The current line is the first line that is processed by any command
that changes text. After any editing operation, the current tine is the last line that was
processed. Several commands move the current tine pointer. For example, TOP and
BOTTOM move the pointer to the beginning and end of your file.
ED also numbers the lines of your file. These numbers are internal. They are not a part of the
file itself, and they don't normally appear on the screen, but you can use them to move ED's
internal pointer to a specific line.
Commands to move the pointer usually cause the new current line to be displayed on the
screen. The exception to this rule is a special line called a null line.

Null Lines: While you are editing a file, ED sometimes creates lines called null lines that
contain no text or characters. ED uses null lines to mark points where it can insert new text in
your file. When you use the TOP command to move the pointer to the beginning of the file,
for example, the current line is a null line before the first line of text, rather than the first line
itself
If you ask ED to print a null line, it puts the word . NULL. on the screen. Null lines are
purely internal to ED. They do not become part of your file when text is saved.

Switching From EDIT to INPUT Mode: You can reenter INPUT mode from EDIT
mode at any time by typing an empty line. When you enter INPUT mode from EDIT mode,
the text you type is inserted beginning immediately after the current line.

4-8  Fifth  Edition



Creating and Printing Files

ED Command Format
ED commands, tike PRIMOS commands, may appear either alone or with arguments. The
format is either

COMMAND

or

COMMAND argument [...argument]

ED commands take three types of arguments:

Argument  Description
String Many ED commands refer to specific items of text. For example, the FIND com

mand locates a specified section of text. With such commands, you give the text in
question as an argument to the command. The command to find the word cat, for
example, is

FIND  cat

An argument consisting of a sequence of text characters is called a string argument.
A string consists of any sequence of letters, numbers, and keyboard symbols,
including blanks. For example the string #define MAXOP 14 is a sequence of 16
characters including two numerals and two blank spaces.
Commands that take string arguments have the following format:

COMMAND string

Numerical ED commands can take numerical arguments that indicate the line number to be
affected, how many lines are to be affected, or how many times to carry out the
operation specified by the command. For example, PRINT 4 tells ED to display four
lines beginning with the current line.
Commands that take numerical arguments have the following format:

COMMAND n

Some ED commands can take both a numerical and a string argument.
Pathname Some ED commands, such as FILE, which saves edited text in a file, take the

pathname of a file as an argument. If the file is in the current directory, the filename
alone can be used.
Commands that take pathame and filename arguments have the following format:

COMMAND pathname

ED commands, like PRIMOS commands, often have both short and long forms. Wherever a
short form exists, it is shown in red type.

Fifth  Edition  4-9



__ 1
PRIMOS User's Guide

Multiple Commands: You can include multiple commands in a single line by separating
them with semicolons (;), just as you do with PRIMOS commands in a PRIMOS command line.

ED Error Messages
ED is an interactive program. You give commands and other input, and ED responds.
However, ED's prompts are much more limited than those you see at PRIMOS command
level. Each time it enters a new mode, ED puts the mode name on the screen (INPUT or
EDIT). Otherwise, you do not see any prompts from ED unless you make a mistake while
typing a command in EDIT mode. If you give ED a command that it cannot understand, you
receive one of the following error messages:

Error  Message  Meaning
?  Your  input  could  not  be  interpreted  as  any  of  ED's  commands.  This  error

often results from attempting to enter text while you are still in EDIT mode.
BAD command command was recognized, but there were problems with the argument. For

example, the format was incorrect, or the specified file could not be found.

Basic ED Commands
Table 4-1 lists the ED commands you are most likely to use. The following sections describe
these commands in in detail. See Appendix E for a complete listing of ED commands. Also
see the New User's Guide to EDITOR and RUNOFF for further information.

The PRINT Command
The PRINT command displays specified lines of your file on the terminal screen. The format is

PRINT [n]

If n is positive, it specifies the number of lines you want displayed, beginning with the
current line. The last tine displayed becomes the new current line. If n is omitted or given a
value of 1, -1, or 0, only the current line is displayed. If n is negative, ED moves the pointer
back n lines from the current line, and then displays one line, which becomes the new current
line. The space between PRINT and n is optional.

For example,

PRINT 5
.NULL.
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

DIMENSION LNUMB (50)
PRINT 2

DIMENSION LNUMB (50)
DO  100  1=1,  10

PRINT  -2
DIMENSION LNUMB (50)

4-10  Fifth  Edition



Creating and Printing Files

TABLE  4-1
Commonly  Used  ED  Commands

Command Function

PRINT Display lines

TOP
NEXT
POINT
BOTTOM

Move the pointer

LOCATE
FIND
NFIND
FIND(w)
NFIND(/i)

Find a string

APPEND
CHANGE
DELETE
INSERT
IB
RETYPE
OOPS

Modify text

UNLOAD
DUNLOAD
LOAD

Copy text to or from a file

QUIT
FILE
SAVE

Save text and end text processing

r

Moving the Pointer
The commands described in this section move ED's internal pointer to a specific line.

The TOP Command: The TOP command moves the pointer to a null line at the top of the
file, just before the first line of text. The format of the TOP command is

TOP

For example,

TOP
PRINT
.NULL.
PRINT 2
.NULL.
C  This  program  generates  the  numbers  1  to  10

Fifth  Edition  4-11



PRIMOS User's Guide

The BOTTOM Command: The BOTTOM command moves the pointer to a null line at
the bottom of the file, just past the last line of text. The format of the BOTTOM command is

BOTTOM

For example,

BOTTOM
PRINT
.NULL.

PRINT  -3
CALL  EXIT

PRINT 5
CALL  EXIT
END

BOTTOM

The NEXT Command: The NEXT command moves the pointer a specified number of
lines and displays the new current line. The format of the NEXT command is

NEXT [n]

where n is the number of lines that the pointer is to be moved.
Positive values of n move the pointer toward the end of the file; negative values move the
pointer toward the beginning. If n is 0 or unspecified, the value of n is treated as 1 and the
pointer is moved 1 line. If n is great enough to move the pointer beyond the top or bottom
null tine, the pointer stops at the null line, and either TOP or BOTTOM is displayed.
For example,

TOP
NEXT
C  This  program  generates  the  numbers  1  to  10
NEXT 5

LNUMB  (I)  =1
BOTTOM
NEXT
BOTTOM

The WHERE Command: ED generates line numbers in order to keep track of the location
of the pointer in your file. The line numbers do not normally appear in your file when lines
are displayed, and they do not become part of your file when it is saved on disk. You can
find the current line number with the WHERE command. The format is

WHERE

You can have ED print line numbers when it prints lines by using the MODE NUMBER
command. See the New User's Guide to EDITOR and RUNOFF for more information on
MODE commands.

4-12  Fifth  Edition

1>



Creating and Printing Files

The POINT Command: The POINT command positions the pointer at a specified line and
displays the line. The format of the POINT command is

POINT n

where n is the number of the line to which the pointer is to be moved.

The POINT n command is equivalent to the sequence TOP, NEXT n. The value of n must be
greater than 0. If n is greater than the number of lines in the file, the pointer is left at the
bottom.

For example,

POINT  5
DO  100  1=1,  10

POINT  7
WRITE  (1,  200)  LNUMB  (I)

POINT  -4
BAD  POINT
POINT  2
C  and  prints  the  numbers  on  the  terminal  screen.

Note
If you are using line numbers in your text (when writing a program, for example) they may not
correspond to ED's line numbers. For example, the command POINT 200 does not point to the
line

2 0 0  F O R M AT  ( 1 0 X ,  1 5 )

in the sample file. Instead, it positions die pointer at the bottom of the file, because the sample
file contains fewer than 200 lines.

Finding  Strings
The LOCATE and FEND commands locate specified strings in your file. The NFIND
command locates a line that does not contain the specified string.

The LOCATE Command: The LOCATE command looks for a line of text containing a
specified string. The format of the LOCATE command is

LOCATE string

LOCATE searches text lines beginning immediately after the current line until it finds a line
containing string. The first line found that contains string is displayed at the terminal and
becomes the new current line. If no line containing string is found, the pointer is left at the
end of the file, and BOTTOM is displayed.

string may not contain commas.

Fifth  Edition  4-13



PRIMOS User's Guide

For example,

PRINT 5
.NULL.
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

DIMENSION LNUMB (50)
TOP
LOCATE DIMENSION

DIMENSION LNUMB (50)

The FIND Command: The FIND command is a specialized version of the LOCATE
command. It searches your file for a line that begins with a specified string. The format of
the FIND command is

FIND string

FEND searches lines beginning immediately after the current line for a line that contains
string beginning in column 1. The first line found that begins with the string becomes the
new current line and is displayed at the terminal. If no line beginning with string is found, the
pointer stops at the end of the file, and BOTTOM is displayed.
string may not contain commas.
For example,

FIND C
C  This  program  generates  the  numbers  1  to  10
FIND  100
100  CONTINUE

The NFIND Command: The NFIND command is the inverse of the FIND command; it
moves the pointer to the first line below the current line that does not begin with the specified
string and displays the line on your terminal screen. The format of the NFIND command is

NFIND string

string may not contain commas.
For example,

PRINT 6
.NULL.

C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

DIMENSION LNUMB (50)
DO  100  1=1,  10

TOP
NFIND C

DIMENSION LNUMB (50)

" *

~

_ .

4-14  Fifth  Edition



Creating and Printing Files

Searching on a Specific Column: Using FEND and NFTND, you can also search for a
string starting in a column other than column 1 by specifying the column number in the
following format:

FIND(n) string

where n is the column number.
The parentheses 0 around the n are required. Do not include any spaces between FEND and
(«)•
For example,

PRINT 12
.NULL.
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

DIMENSION LNUMB (50)
DO  100  1=1,  10

LNUMB  (I)  =1
WRITE  (1,  200)  LNUMB  (I)

200  FORMAT  (10X,  15)
100  CONTINUE

CALL  EXIT
END

TOP
FIND  (7)  D

DIMENSION LNUMB (50)
FIND(2)  0
200  FORMAT  (10X,  15)

You can use the NFIND command in a similar way. The format is

NFIND(n) string

For example,

NFIND(1)  C
DIMENSION LNUMB (50)

FIND(2)  0
200  FORMAT  (10X,  15)
NFIND  (2)  0

CALL  EXIT

Note
The LOCATE, FIND, and NFIND commands are case sensitive; they do not treat uppercase and
lowercase letters as equivalent For example, the command LOCATE WORD does not find the
string Word, because the last three letters of the two strings are not in the same case.

Fifth  Edition  4-15



PRIMOS User's Guide

Modifying Text
The commands described in this section alter the text of one or more lines.

The APPEND Command: The APPEND command attaches a specified string to the end
of the current line. The format of the APPEND command is

APPEND string

One blank space must separate the command from string. Any further blanks are treated as
part of the string.
For example,

DIMENSION LNUMB (50)
APPEND ,  LSTORE (50)

DIMENSION  LNUMB  (50),  LSTORE  (50)

The CHANGE Command: The CHANGE command replaces one string in the current line
with another string. The format of the CHANGE command is

CKANGE/string-l/string-2/[G][n]

Argument Meaning
string-1 The original string
string-2 The new version of the string

CHANGE allows two optional arguments:

G  If  you  specify  G,  CHANGE  affects  every  occurrence  of  string-1  on  a  line.  If
you do not specify G, only the first occurrence of string-1 is changed.

n Specifies the number  of  lines on which the change is  to  be made.  If  n  is  not
specified or has a value of 0 or 1, ED makes changes only on the current line.If a value other than 0 or 1 is specified, ED inspects and makes changes on n ,_^
lines, starting at the current line. The pointer is moved to line n. If there are
fewer than n lines after the current line, the pointer stops at the null line at the
end of the file, and the message BOTTOM is displayed. ED displays all
changed lines as well as the last line examined.

Delimiters: The first character after the command word CHANGE is a delimiter. ED uses
the delimiter to mark the beginning and the end of each of the strings. The slash (/) is
customarily used as a delimiter, but you can use any delimiter that is not part of one of the
strings. The following example uses slash (/) as a delimiter:

DIMENSION  LNUMB  (50),  LSTORE  (50)
CHANGE/DIMENSION/COMMON/

COMMON LNUMB (50), LSTORE (50)

4-16  Fifth  Edition



Creating and Printing Files

If slash (/) is part of one of the strings, choose a different delimiter. The following example
uses the pound sign (#) as a delimiter.

DIMENSION  LNUMB  (50)/  LSTORE  (50)
CHANGE*/#,#

DIMENSION  LNUMB  (50),  LSTORE  (50)

You can use CHANGE to insert characters at the beginning of a line with the following
sequence:

CHANGE//string/

For example,

LNUMB  (50),  LSTORE  (50)
CHANGE//  DIMENSION  /

DIMENSION  LNUMB  (50),  LSTORE  (50)

The DELETE Command: The DELETE command deletes a specified number of lines
from your file. The format is

DELETE [n]

where n is the number of lines to be deleted beginning with the current line.
If n is positive, then the current line is deleted along with «-l lines after it. If n is negative,
then the current line is deleted along with n-\ lines before it. If n is not specified or has a
value of-1, 0, or 1, then only the current line is deleted.
ED leaves the pointer at a null line where the last deleted line was located. This enables you
to insert new text at this point. The null line is eliminated if you move the pointer to another
line in the file. For example,

TOP
PRINT 5
.NULL.
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

DIMENSION  LNUMB  (50),  LSTORE  (50)
NEXT -2
C  and  prints  the  numbers  on  the  terminal  screen.
DELETE
PRINT
.NULL.
TOP
PRINT  4
.NULL.

C  This  program  generates  the  numbers  1  to  10
C

DIMENSION  LNUMB  (50),  LSTORE  (50)

Fifth  Edition  4-17



PRIMOS User's Guide

4-18  Fifth  Edition

The INSERT Command: The INSERT command inserts a specified new line after the
current tine. The inserted line becomes the current line. The format of the INSERT command is

INSERT string

where string is the new line of text to be inserted.
The command word INSERT and string must be separated by one space. Any further spaces
are treated as part of the string.
For example,

DIMENSION  LNUMB  (50),  LSTORE  (50)
DO  100  1=1,  10

NEXT  -1
DIMENSION  LNUMB  (50),  LSTORE  (50)

INSERT  COMMON  LSTART  (50)
PRINT 2

COMMON LSTART (50)
DO  100  1=1,  10

The IB Command: The IB command inserts a new line before the current line; the inserted
line becomes the current line. The format of the IB command is

IB string

The command word IB and string must be separated by one space. Any further spaces are
treated as part of the string.
For example,

PRINT 5
.NULL.
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

DIMENSION  LNUMB  (50),  LSTORE  (50)
IB  COMMON  LSTART  (50)
NEXT -3
C  This  program  generates  the  numbers  1  to  10
PRINT 5
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

COMMON LSTART (50)
DIMENSION  LNUMB  (50),  LSTORE  (50)

The RETYPE Command: The RETYPE command deletes the current line and replaces it
with a specified string. The format of the RETYPE command is

RETYPE string



Creating and Printing Files

The command word RETYPE and string must be separated by one space. Any further spaces
are treated as part of the string.

For example,
PRINT 3
C  Thsi  porgarm  gennratse  hte  mumbers  1  too  1999
C  and  prints  the  numbers  on  the  terminal  screen.
C
POINT 1
C  Thsi  porgarm  gennratse  hte  mumbers  1  too  1999
RETYPE  C  This  program  generates  the  numbers  1  to  10
PRINT
C  This  program  generates  the  numbers  1  to  10
PRINT 3
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

RETYPE followed immediately by a single space and I Return | erases the current line and
replaces it with a blank line. RETYPE followed by I Return | alone results in the error message,
BAD RETYPE.

For example,
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C
NEXT -1
C  and  prints  the  numbers  on  the  terminal  screen.
R E T Y P E  Y o u  o m i t  b l a n k  s p a c e  a f t e r  R E T Y P E .
BAD RETYPE
R E T Y P E  Y o u  i n c l u d e  t h e  b l a n k  s p a c e  a f t e r  R E T Y P E .
PRINT

The file contains a blank line here.
NEXT  -1
C  This  program  generates  the  numbers  1  to  10
PRINT  3
C  This  program  generates  the  numbers  1  to  10

The OOPS Command: The OOPS command restores the last line changed by any editing
command to its previous condition. OOPS does not reverse changes made to several lines at
one time. The format of the OOPS command is

OOPS
For example,

DIMENSION  LNUMB  (50),  LSTORE  (50)
CHANGE/DIMENSION/COMMON

COMMON LNUMB (50),  LSTORE (50)
OOPS

DIMENSION  LNUMB  (50),  LSTORE  (50)

Fifth  Edition  4-19



PRIMOS User's Guide

Copying Text To and From Disk Files

The UNLOAD Command: The UNLOAD command copies tines from the file you are
editing to another file without deleting the lines from the file you are editing. The format of
the UNLOAD command is

UNLOAD pathname [n]

Argument  Meaning
pathname The file to which the lines are to be copied. If the file is in your current directory,

you can specify die filename alone.

WARNING
If you specify a file that already exists, UNLOAD overwrites it, and its original
contents are lost

n The number of tines to be copied, including the current line. If n is omitted or has a
value of 0, 1, or -1, only the current line is copied. When n is negative, the current
line and n-\ preceding lines are copied. The last line to be copied becomes the new
current line.

For example,

TOP
PRINT  6
..NULL.
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

DIMENSION  LNUMB  50;,  LSTORE  (50)
DO  100  1=1,  10

NEXT -4
C  This  program  generates  the  numbers  1  to  10
UNLOAD TEMP 3
PRINT 2
C

DIMENSION  LNUMB  (50),  LSTORE  (50)
TOP
PRINT  6
..NULL.
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

DIMENSION  LNUMB  (50),  LSTORE  (50)
DO  100  1=1,  10

4-20  Fifth  Edition



Creating and Printing Files

The DUNLOAD Command: The DUNLOAD command copies a specified number of
lines from the file being edited to another file and deletes the lines from the file being edited.
The format of the DUNLOAD command is

DUNLOAD pathname [n]

Argument  Meaning
pathname The file to which the lines are to be moved. If the file is in your current directory,

you can specify the filename alone.

WARNING
If the file specified already exists, DUNLOAD overwrites it, and the original
contents are lost

n The number of lines to be copied and deleted, including the current line. If n is not
specified or has a value of 0, 1, or -1, the current line is copied and deleted. Nega
tive values of n cause the current line and n-l preceding lines to be copied and
deleted.

DUNLOAD leaves the pointer positioned at a null line where the deleted lines were located,
so that you can insert text at this point. This null line is eliminated when you move the
pointer.
For example,

TOP
PRINT  6
.NULL.
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

DIMENSION  LNUMB  (50),  LSTORE  (50)
DO  100  1=1,  10

NEXT -4
C  This  program  generates  the  numbers  1  to  10
DUNLOAD TEMP.FTN 3
PRINT 2
.NULL.

DIMENSION  LNUMB  (50),  LSTORE  (50)
TOP
NEXT

DIMENSION  LNUMB  (50),  LSTORE  (50)
PRINT 6

DIMENSION  LNUMB  (50),  LSTORE  (50)
DO  100  1=1,  10

BOTTOM

Fifth  Edition  4-21



PRIMOS User's Guide

The LOAD Command: The LOAD command copies the contents of a disk file into the
file you are editing. The material is inserted immediately after the current line. The format of
the LOAD command is

LOAD pathname

where pathname specifies the file to be inserted. If the file is in the current directory, you can
use the filename alone. The file named by pathname is not changed by the LOAD operation.
For example,

TOP
PRINT  3
. .NULL .

DIMENSION  LNUMB  (50),  LSTORE  (50)
DO  100  1=1,  10

TOP
LOAD TEMP.FTN
TOP
PRINT 6
.NULL.
C  This  program  generates  the  numbers  1  to  10
C  and  prints  the  numbers  on  the  terminal  screen.
C

DIMENSION  LNUMB  (50),  LSTORE  (50)
DO  100  1=1,  10

Ending and Saving an ED Session
The QUIT, FILE, and SAVE commands end and/or save the current ED session.

The QUIT Command: The QUIT command tells ED to return to PRIMOS command level
without saving the ED work file. Any new material you have created and not saved is
discarded. If the file you have been editing already exists on disk, the original version
remains unchanged. The format of the QUIT command is

QUIT

If you have created or modified a file during the session, ED responds to QUIT with the
message

FILE  MODIFIED,  OK  TO  QUIT?

A YES (or Y, YE, O, OK, or | Return |) response returns you to PRIMOS command level
without saving the work file. Any other response provokes the message PLEASE FILE from
ED. (See the explanation of the FILE command, below.)

4-22  Fifth  Edition



Creating and Printing Files

If you did not create or modify a file during an ED session, or if you have already saved all
new material with the SAVE command (see below), QUIT returns you to PRIMOS command
level without any warning messages.

WARNING
If you quit without saving your file, any work you have done during the current editing session
is lost

The FILE Command: The FILE command saves the work file on disk and returns you to
PRIMOS command level.

The format for the FILE command is

FILE [pathname]

where pathname specifies the file in which your work is to be saved. If the file is in the
current directory, you can use a filename alone.

If you have been creating a new file (you invoked ED without a pathname or filename), you
must specify a filename or pathname.
If you have been editing an old file (you invoked ED with a filename), then you can give the
FILE command with or without a pathname or filename. In these cases

• If you don't specify a pathname or filename, the work file is saved under the original
filename. The original version of the file is overwritten.

• If you do specify a pathname or filename, then the work file is saved under that name.
The original version of the file remains unchanged.

WARNING
If you specify the name of a file mat already exists, FILE overwrites it with the work file, and
the file's original contents are lost.

The SAVE Command: The SAVE command saves the contents of the ED work file but
does not leave ED or terminate the current session. The format of the SAVE command is

SAVE pathname

where pathname is the name of the file to which you want the work file copied. If the file is
in your current directory, you can give the filename alone.

You can give the SAVE command with or without specifying a pathname or filename. You
use the pathname or filename exactly as you do with the FILE command.

Fifth  Edition  4-23



PRIMOS User's Guide

SAVE is useful if you make extensive changes to a file, and you want to save your work
periodically during the ED session.

WARNING
Because the work file does not exist outside ED, you must use either FILE or SAVE if you want
to save your work. If you quit ED without saving your work, then the contents of the work file,
including any new text you have added and any changes you have made, are lost. (If you give
the SAVE command during a work session, then the work file is saved at that point If you later
quit without a further SAVE or FILE, you lose any changes made since the last SAVE.)

P r i n t i n g  T e x t  F i l e s  W i t h  S P O O L  * \
Use the SPOOL command to print copies of text files on a printer. Because printing can be
relatively slow in computer terms, the SPOOL process is designed to allow you to continue
other work with PRIMOS, or even log out, while you wait for your file to be printed.
Sending a file to be printed with the SPOOL command is known as spooling a file.
The SPOOL command format is

SPOOL fPatnname [options]\
\  o p t i o n s  j

where pathname refers to the file you want printed. If the file is in the current directory, you
can use the filename alone.

Spool options allow you to choose specific printers, and many other characteristics of your
printing job. Because facilities vary from installation to installation, check with your System
Administrator to find out which options are available and how to specify them on your system.
If you specify no options, SPOOL prints your file on your system's default printer with all
other options set at the default values established for your system. For example, to print the
file POETRY.DOC on the default printer, give the command

OK,  SPOOL  POETRY.DOC

Ask your System Administrator about the default printer and other default option settings for
your installation.
For online information on the SPOOL command and its options, use the -HELP option:

OK,  SPOOL  -HELP

4-24  Fifth  Edition



Creating and Printing Files

The SPOOL Queue
After you make a print request with the SPOOL command, PRIMOS takes over the process
of printing your file and returns you to command level so that you can give other commands
or even log out. To do this, PRIMOS maintains a list of files waiting to be printed called a
SPOOL queue. Jobs are put into the queue according to their priority. Jobs of equal priority
are queued in the order they are submitted. Short jobs are given higher priority to make the
system more efficient You can also specify that your printing job be deferred to a later time
using the -DEFER option of the SPOOL command. (See the section, Deferred Printing,
below.) Figure 4-3 illustrates a spool queue.
After you give the SPOOL command, PRIMOS enters your request in the SPOOL queue, and
displays the folowing message:

Request  nn  added  to  q_ueue,  x  records  :  pathname

nn is a number that identifies the entry in the spool queue, x is the number of records in the
file, pathname is the name of the file you want to print.

Files Being
Spooled  by  Users

Q4130-5LA-19-1

FIGURE 4-3
A SPOOL Queue

Checking the Queue
To check the status of the spool queue, give the SPOOL command with the -LIST option:

SPOOL -LIST

Fifth Edition 4-25



PRIMOS User's Guide

PRIMOS lists all your job requests in the queue that have not yet been, printed. The listing
includes the job's number in the queue, time submitted (in 24 hour hhmm format), your user
ID, the filename, the number of copies requested, and the file size. For example,

OK,  SPOOL  -LIST
[SPOOL  Rev.  22.0  Copyright  (c)  1987,  Prime  Computer,  Inc.]

System SYSX
R e q u e s t  T i m e  U s e r  F i l e  N o  S i z e  S t a t e

1 8  1 1 4 3  S O N Y A  B A T C H . C O M O  1  1
2 0  1 1 4 7  S O N Y A  L I S T . C O M M  1  2
2 2  1 1 5 1  S O N Y A  F I L E 3  4  5

On some systems you may see information for other users' SPOOL requests as well.
You can get more detailed information with the command SPOOL -LIST -DETAIL.

Canceling a Spool Request
You can cancel a spool request with the -CANCEL option. The format is

SPOOL -CANCEL n

where n is the file's number on the SPOOL queue. (You can find n with the -LIST option,
above.)
For example,

SPOOL -CANCEL 18
[SPOOL  Rev.  22.0  Copyright  (c)  1988,  Prime  Computer,  Inc.]

Request  18  cancelled

You can cancel all your spool requests by using the -ALL option.

OK,  SPOOL -CANCEL -ALL

Printing Multiple Copies
You can request several copies of one file by using the -COPIES option. The format is

SPOOL pathnam -COPIES n

where n is the number of copies you want. You can request a maximum of 99 copies. The
number of copies requested is displayed in the SPOOL -LIST display in the column headed
No.

4-26  Fifth  Edition



Creating and Printing Files

Deferred  Printing
The -DEFER option tells SPOOL not to begin printing the file until the time you specify. This
option is useful (and often encouraged by System Administrators) when you have a large file
that need not be printed immediately. Such files can be deferred to a time when there is little
demand on the printer. You cannot defer the printing of a file for more than 24 hours.
The format of the -DEFER option is

SPOOL pathname -DEFER time

where time is given in either 24-hour or 12-hour format. Specify 24-hour format as hh[:]mm.
You must specify four digits, but the colon (:) is optional. For example, 0200 or 02:00 are
both valid; 200 is not. Specify 12-hour as [h]h[:]mm[AM/PM]. The colon is optional, but if
you include it, you must use four digits. For example, 300PM and 03:00PM are valid;
3:00PM is not.
If you omit time, -DEFER defaults to midnight. In networks that span time zones, the
computer that holds the queue determines the time.

Choosing  a  Printer  Environment
If you must print your job on a certain type of paper or on a specific printer, you can choose
from a set of valid paper or printer types by using the -ATTRIBUTE option.

Note
This option supersedes the -AT, -FORM, and -TYPE options.

The format is

SPOOL -ATTRIBUTE namel [name2 ...]

where each name specifies one of the printer or paper types available on your system.
Each system maintains its own list of attribute names, depending on the facilities available.
Names for paper types are called form names, and names for printers are called
destinations. In each case, they are strings with a maximum of 16 characters chosen by the
System Administrator. Ask your System Administrator what attributes are available and what
names they have on your system.

-ATTRIBUTE Examples: Suppose your system allows you to use label paper to print
some jobs. If the System Administrator has chosen LABEL as the form name for label paper,
you can print the file MAILJLIST on labels by specifying

OK,  SPOOL  MAIL_LIST  -ATT  LABEL

Your system may allow you to request multipart paper, preprinted forms, and the like with
the appropriate form names. Your System Administrator can tell you what is available and
what form names to use.

Fifth  Edition  4-27



PRIMOS User's Guide

You can similarly request to have your file printed on a specific printer by specifying the
appropriate destination. For example, suppose your system has a letter quality printer that
your System Administrator has assigned the destination name LQ100. You can request that
the file RESUME.DOC be printed on the letter quality printer with the following command:

OK, SPOOL RESUME.DOC -ATT LQ100

Printing Part of a File
You can print part of a file using the -FROM and -TO options. The format is

SPOOL pathname -FROM m -TO n

SPOOL prints from page m through n, inclusive. The -FROM value must not be greater than
the -TO value. Either -FROM or -TO may be omitted.

Note
If you print formatted documents with SPOOL using the -FROM option, formatting information
may be lost if it occurs on pages that are not printed. For example, if a document begins with
codes to set a specific font, these codes are not received by the printer if the page that contains
them is not printed. As a result, the pages mat are printed do not use the requested font.

Receiving Notification
To receive notification on completion of your printing job, use the -NOTIFY option. The
format is

SPOOL pathname -NOTIFY

Multiple Options
You can use any or all of the above options except -CANCEL jointiy in a single SPOOL
command line. For example,

OK,  SPOOL TEST  -COPIES  3  -ATT  BLDG.1  -DEFER  2200
[SPOOL  Rev.  22.0  Copyright  (c)  1988,  Prime  Computer,  Inc.]

Request  48  added  to  queue,  2  records  :  <MFD>MYDIR>TEST

This command requests that three copies of the file named TEST be printed at the BLDG. 1
printer at 10:00 PM (2200).
You can also cancel printing of all your files spooled on a specific system by using the
SPOOL command with the -CANCEL -ALL -ON options. For example, to cancel all of the
files that you have queued on system SYSX, use the command

OK,  SPOOL  -CANCEL  -ALL  -ON  SYSX

4-28  Fifth  Edition



Creating and Printing Files

Modifying Options
To modify a file's SPOOL options, use the -MODIFY option:

SPOOL -MODIFY n options

File number n must already be an entry in the spool queue. You can use any of the SPOOL
options listed above. They are substituted for any options you originally specified.
If you want to cancel the -DEFER option you must use the -NODEFER option to remove
the -DEFER attribute from a file. In the previous example, the printing of the file TEST,
request number 48, was deferred until 10:00 PM (2200). The following command causes
TEST to be printed without deferment, according to its place in the SPOOL queue:

OK, SPOOL -MODIFY 4 8 -NODEFER

Use the SPOOL -LIST display to verify any changes made with the -MODIFY option.

Other SPOOL Options
Other SPOOL options allow you to choose such characteristics as paper orientation,
pagination and page header formats, printer character translation, which paper bin a multibin
printer uses, and the like. Some options allow you to SPOOL from files that are still open
and to SPOOL directly from your files. (SPOOL normally copies files to its own file area
and prints from the copies.) For a complete list of SPOOL options, see the PRIMOS
Commands Reference Guide.

Fifth  Edition  4-29



Protecting Your Fiies and Directories

r

The file system is available to all logged in users. PRIMOS provides a file protection
mechanism called Access Control Lists (ACLs) that allows you to control other users' access
to your files. This chapter shows you how to use the ACL system.

An Overview of File Protection
PRIMOS controls access to file system objects by associating them with ACLs. An ACL is a
list of users and the access rights they are allowed. Whenever you try to carry out any
operation on a file system object protected by an ACL, PRIMOS first checks the list to see if
you have the required rights. If you do, PRIMOS carries out your task. If not, PRIMOS
refuses to carry out the command and displays an error message.

Access Rights
Access rights define the specific activities a user or group of users is permitted to carry out
on the protected object. For example, users with Read access to a file may read it, users with
Delete access to a directory may delete objects it contains, and so on. PRIMOS defines nine
types of access rights that cover all possible operations on file system objects. These are
summarized in Table 5-1 and discussed in detail in the section Types of Access Rights.

Access Control Lists
An Access Control List (ACL) is a list of users and groups of users along with the initials of
the access rights granted to each. A typical ACL looks tike this:

BILL:  DALURWX
$REST:  LUR

In this example, user BELL has Delete, Add, List, Use, Read, Write, and Execute rights.
$REST, a special designation indicating all other users, have more limited rights: List, Use,
and Read.

Fifth  Edition  5-1



PRIMOS User's Guide

TABLE 5-1
ACL Access Rights

Symbol Right Applies To What Is Permitted

R Read Files Reading a file

W Write Files Modifying a file

U Use Directories Attaching to directories

L List Directories Listing directory contents

A Add Directories Adding directory entries

D Delete Directories Deleting directory entries

O Owner Files and
directories

Setting access rights except for P and ALL

P Protect Directories Changing access rights

X Execute Local EPFs Executing a local EPF

ALL All Files and
directories

All of the above rights

NONE Files Files and
directories

No access allowed

Protecting Files With ACLs
You protect file system objects by linking them with ACLs. PRIMOS provides several ways
to do this:

• You can use a specific ACL to protect a specific file system object. PRIMOS treats a
specific ACL as an attribute of the object it protects.

• You can create a general version of an ACL, called an access category, that you can
link with any number of objects in a directory. You can use an access category to
provide identical protection to a group of files.

• You can protect large numbers of files, or even your whole file tree, with a single
specific ACL or access category. This is possible because your access rights to a parent
directory apply to subdirectories lower in the tree. Such protection is called default
protection.

Setting ACLs
In systems that use ACLs, the System Administrator establishes an ACL for your top-level
directory. Except where you specify alternate ACLs, this ACL provides default protection for
the other objects in your file tree. If the System Administrator has given you sufficient access

5-2  Fifth  Edition



Protecting Your Files and Directories

rights, you can modify the ACLs on file system objects in your file tree. PRIMOS provides
three commands that you can use to list, set, and modify ACL protection: LIST_ACCESS,
SET_ACCESS, and EDIT_ACCESS. This chapter shows you how to use these commands to
tailor protection of objects in your file system to your needs.

Note
Not all System Administrators choose to allow ACL protection of files. Directory passwords and
owner/non-owner access rights provide an alternative to access control lists as a protection
system for PRIMOS file system objects. See Appendix F for a discussion of the directory
password system and related commands (PASSWD and PROTECT). Appendix F also explains
how to convert password-protected directories to ACL-protected directories, and vice versa.

*

r

Access Control Lists (ACLs)
An ACL is a list of users along with the access rights granted to each. This section shows you
how to list the ACL protecting any file system object and explains how the ACL determines
each user's rights.

Listing Access Rights
Use the LIST_ACCESS command to list the ACL protecting any file system object.

The format is

LIST_ACCESS [pathname]

where pathname refers to the object for which you want to list access rights. If the object is
in the current directory, you can use the objectname instead of the pathname. If you do not
specify a pathname or objectname, then LIST_ACCESS lists access rights to the current
directory.
The following example lists the ACL protecting the current directory:

OK, LIST_ACCESS
ACL  protecting  "<Current  Directory>":

AUTHOR:  ALL
E D I TO R :  A L L
A D V T :  L U R
$ R E S T:  N O N E

OK,

To list access rights for a specified object use the following format:

OK, LIST_ACCESS BOOKS>FICTION
ACL  protecting  "BOOKS>FICTION":

C A R O L :  A L L
.COMMITTEE: DALURW
$ R E S T :  R

OK,

Fifth  Edition  5-3



PRIMOS User's Guide

Note
You cannot list an ACL with the PRIMOS SLIST command. You must use the LIST_ACCESS
command to list an ACL.

The first column of each entry gives the name of a user or group of users, ending with a
colon (:). The second column shows the access rights associated with each user or group. An
ACL may contain a maximum of 32 of these uszr.access right pairs.

Note
If you change the ACL protecting your current directory, the new ACL takes effect only after
you have attached to a directory higher in the file system tree or reattached to your current
directory. However, LIST_ACCESS shows the new ACL immediately.

Types of Users
An ACL can identify users in three ways:

• User ID
• Group name
• The special identifier $REST

A user ID identifies an individual user. In the example, user CAROL has ALL access rights.
A group name is the name of a group of users established by the System Administrator. In
PRIMOS, group names begin with a period (for example, .COMMITTEE) to distinguish
them from individual user names. For example, if the group name .COMMITTEE represents
the user names JANE, FRED, and BARBARA, then each of these users has the rights
assigned to .COMMITTEE by the ACL: Delete (D), Add (A), List (L), Use (U), Read (R),
Write (W).

$REST specifies the rights granted to all system users not otherwise identified in the ACL.
In the example, users other than the members of .COMMITTEE and CAROL are granted
Read (R) rights only.

Specifying Rights
The second column of each entry in the ACL shows the rights granted to the user or group
listed in the first column. Rights are indicated either by a series of one letter abbreviations or
by one of the key words ALL or NONE. The rights represented by each abbreviation or key
word are listed in Table 5-1.

Several abbreviations can be combined in a string, without punctuation, to represent any
number of rights. In the example, .COMMITTEE'S Delete, Add, List, Use, Read, and Write
rights are shown as DALURW. ALL is equivalent to OPDALURWX, all of the rights that
exist in the ACL system. NONE means no rights at all.

5-4  Fifth  Edition



Protecting Your Files and Directories

Overlapping Access Rights
A user who is a member of a group can effectively be listed more than once in a single ACL.
PRIMOS determines such a user's rights as follows:

• If a user is listed individually and is also a member of a group listed in an ACL, then
the user's rights as an individual take precedence. For example, if CAROL is also a
member of .COMMITTEE, she still has ALL access rights, even though other members
of .COMMITTEE receive only DALURW rights.

• A user who is a member of more than one group listed in an ACL receives all of the
rights granted to each group. Suppose, for example, that your System Administrator
creates two user groups with the following members:

.PROJECTA .PROJECTB

CAROL CAROL
ANDY FRED
MARY ROBIN
TED
NANCY

f a file system obj<jet is protected

.PROJECTA: DALURW

.PROJECTB: LURX
TED: NONE

then CAROL, as a member of .PROJECTA and .PROJECTB, receives DALURWX
rights.
Note that TED has no rights. Even though he is a member of PROJECTA, his
individual rights as listed in the ACL (in this case NONE) take precedence.

Specific ACLs and Access Categories
ACLs may exist in two forms:

• A specific ACL is an attribute of a specific file, directory, or segment directory in your
file system tree.

• An access category is a separate file system object. You can link an access category to
any number of file system objects in the same directory in order to protect them.

Specific ACLs and Access Categories are described in the next two sections.

Specific  ACLs
The PRIMOS file system treats a specific ACL as one attribute of the file system object that
it protects. The ACL is not itself a separate file system object. For example, when you list the
contents of a directory, specific ACLs protecting objects in the directory are not listed.

Fifth  Edition  5-5



PRIMOS User's Guide

You can create a specific ACL only for an object that already exists in the file system. When
an object protected by a specific ACL is deleted, the ACL is deleted with it.

Note
When you use the COPY command to copy an object protected by a specific ACL, the ACL is
not copied with the object unless you use the -ALL option of the COPY command. Objects
copied without die -ALL option receive default protection from the directory into which they
are copied.

Figure 5-1 shows specific ACLs protecting objects in a file system tree.

acl-1
MYDIR

f  acl-2  >, acl-3

V "± J SUBDIR

Q4130-5LA-20-I

FIGURE 5-1
ACLs Protecting File System Objects

Creating Specific ACLs
To protect an existing file, segment directory, or directory with a specific ACL, use the
SET_ACCESS command in the following format:

SET_ACCESS pathname acl [-NO_QUERY]

Argument/Option
pathname

acl

Meaning
Refers to the file, segment directory, or directory to be protected. If the object
is in the current directory, you can use the objectname alone. If the specified
object does not exist, SET_ACCESS creates an access category called
pathname.ACAT as explained below in the section Creating an Access
Category. You cannot set an ACL on an access category.
The Access Control List (ACL) specifying access to the object. Type the ACL
as in the following example:

JANE:ALL .COMMITTEE:DALURW BOB:LUR $REST:NONE

5-6  Fifth  Edition



Protecting Your Files and Directories

The list is a series of pairs of user identifiers and access rights. Enter each
pair in the following format:

identifier:access_rights

A r g u m e n t  M e a n i n g
identifier  A user  ID,  group name,  or  the  identifier  $REST
:  A  colon  separating  identifier  and  access  rights  in  each

pair. Do not put spaces before or after the colon.
access rights A list of single letter abbreviations for access rights or

the designation ALL or NONE. Type lists of letter
abbreviations without spaces (for example, DALUR,
not DALUR). You may type the letters in any
order.

If the ACL contains more than one pair, separate the pairs with spaces. The
ACL may contain as many as 32 pairs, but may not be longer than 160 char
acters in total, including blanks. The $REST grouping, unless specified on the
command line, is automatically given no rights (the designation NONE).

-NO_QUERY PRIMOS normally queries you before replacing the ACL currently protecting
the object The -NO_QUERY option suppresses this query.

Note
In systems that use ACL protection, any object not explicitly protected
by a specific ACL or access category is automatically default protected.
This means that the new ACL always replaces some previous ACL pro
tection.

The following example shows the use of SET.ACCESS to set a specific ACL:

OK, SET_ACCESS BOOKS BOB:DALUR .EDITORS:ALL $REST:LUR
A  specific  ACL  for  "BOOKS"  already  exists.
Do  you  want  to  replace  it?

If you reply with YES or Y, a new specific ACL is created for BOOKS. BOB receives
DALUR access rights to BOOKS. Members of the group .EDITORS receive all rights. All
other users receive LUR rights.
The following example shows the display you see when you list the ACL:

OK, LIST_ACCESS BOOKS

ACL  Protecting  "BOOKS":
B O B :  D A L U R
.EDITORS:  ALL
$ R E S T :  L U R

OK,

Fifth  Edition  5-7



PRIMOS User's Guide

Modifying a Specific ACL
The EDIT_ACCESS command allows  you  to  modify  an  existing  ACL without  replacing  it
entirely. The format is

EDIT.ACCESS  pathname  acl  [-NO_QUERY]

A r g u m e n t  M e a n i n g
pathname  Refers  to  an  existing  file  system  object  for  which  you  want  to  modify  the

ACL. If the object is in the current directory, you can give the objectname
alone.

acl  Lists  the  pairs  of  user  identifiers  and  access  rights  you  want  to  add  or  change.
-NO_QUERY If you use EDIT_ACCESS with an object that is protected by an access cate

gory or by default, PRIMOS creates a specific ACL for the object. PRIMOS
queries  you  before  creating  the  new ACL.  The  -NO_QUERY option
suppresses this query.

If you specify a user ID or group ID already listed in the ACL, the user's or group's current access
rights are replaced by the new rights you specify. To remove a user or group from an ACL, use a
null access; list the group or user without any rights identifier (for example, JOHN:).

The following example shows how to use EDIT_ACCESS:

OK, LIST_ACCESS REPORTS

"Reports"  protected  by  default  ACL  (from  "<HEADQ>OFFICE"):
J A C K :  L U R
S T E V E :  A L L
$REST:  NONE

OK, EDIT_ACCESS REPORTS JACK:DALURW JILL:LUR
"REPORTS"  is  default-protected.  Create  specific  ACL?  YES
OK, LIST_ACCESS REPORTS

ACL  protecting "REPORTS" :
JACK: DALURW
J I L L : LUR
STEVE: ALL
$REST: NONE

JACK'S original rights (LUR) to REPORTS are changed to DALURW. JJEL now has LUR
access. The original rights of STEVE (ALL) and $REST (NONE) remain unchanged.

WARNING
To change access rights to top-level directories, use EDIT_ACCESS, not SET_ACCESS. If you
use SET_ACCESS and fail to include yourself in the access list, you may no longer have any
rights at all to your own directory. You can create the same problem with EDIT_ACCESS, but
to do so, you must explicitly remove yourself from the ACL. If this happens, see your System
Administrator.

5-8  Fifth  Edition



Protecting Your Files and Directories

Access Categories

r

An access category is an ACL that exists as a separate file system object. You can protect
any number of files, directories, or segment directories by linking them to an access category
in the same directory.
Access catergories are a convenient way to provide identical protection to a group of related
file system objects. Creating a single access category and linking it to several objects is easier
than setting the same specific ACL individually on each of the objects. This is especially
convenient when the list of users is long or needs frequent adjustment. You can change
access to all of the objects at once simply by changing the access category.

Listing Access Categories in a Directory
Like other file system objects, an access category has a name. When you use LD to list the
contents of a directory that contains an access category, the access category's name appears
along with the names of other objects in the directory. Access category names use the suffix
.ACAT.
For example, the following directory listing shows two access categories, COVER.ACAT
and MEMQACAT:

OK,  LD

<DISK>ACCOUNTING>WORKGROUP (ALL access)
18  records  in  this  directory,  18  total  records  out  of  quota  of  0.

4  Files.

F I N A N C E S  M E M O l  M E M 0 2  R E P O R T

2  Director ies

ACCOUNTING  PERSONNEL

2  Access  Categories.

COVER.ACAT  MEMO.ACAT

OK,

Listing the Contents of an Access Category
Use the LIST_ACCESS command to list the contents of an access category. Give the
LIST_ACCESS command with the pathname of the access category you want to list. If the
access category is in the current directory you can give the objectname alone.
You need not supply the .ACAT suffix with the access category name unless another object
in the directory has the same basename as the access category. For example, consider the two
directories in Figure 5-2.

Fifth  Edition  5-9



PRIMOS User's Guide

Q4130-5LA-28-1

FIGURE 5-2
Listing Access Categories

You can list the contents of NORM. ACAT in DIRA with either of the following commands:

OK, LIST_ACCESS NORM
OK, LIST_ACCESS NORM.ACAT

To list the contents of TALE. AC AT in DERB, you must specify

OK,  LIST_ACCESS  TALE.ACAT

If you give the command

OK,  LIST_ACCESS TALE

the access rights for the file TALE are displayed. Note the difference between giving the
LIST_ACCESS command with the name of an access category and giving it with the name
of another type of file system object. In the first case, you see a listing of the contents of the
access category itself. In the second case, you see the contents of the ACL protecting the
object.

Protecting Objects With Access Categories
Protecting file system objects with access categories is a two step process.

1. If the access category you wish to use doesn't already exist, create it.
2. Link an existing access category to the file system object.

Use a form of the SET_ACCESS command for each step. You can also modify and delete
access categories with the EDIT_ACCESS and DELETE commands. The following
paragraphs show you how to carry out these operations.

5-10  Fifth  Edition



Protecting Your Files and Directories

Creating an Access Category: To create an access category give the SET_ACCESS
command in the following format:

SET_ACCESS category-name acl [-NO_QUERY]

Argument/Option  Meaning
category-name The name of the new access category. If you create the access category in a

directory other than current one, use a pathname. If you don't specify the suf
fix .ACAT, it is appended automatically to the name you give.

acl  Specifies  the  identifier.access  right  pairs  for  the  access  category  you  are
creating.

-NO_QUERY PRIMOS normally queries you before replacing the ACL currently protecting
the object The -NO_QUERY option suppresses this query.

The following example shows the creation of an access category with SET_ACCESS:

OK, SET_ACCESS PROTECT ME:ALL .GROUP:LUR
"PROTECT.ACAT"  does  not  exist.  Create  access  category?  YES
OK,

You can list the new access category as follows:

OK, LIST_ACCESS PROTECT

Access  category  "PROTECT.ACAT":
M E :  A L L
.GROUP:  LUR
$REST:  NONE

Note
If a file, directory, or segment directory has the same pathname as the access category you want
to create, be sure to specify the .ACAT suffix with category-name when giving the
SET_ACCESS command. Otherwise, SET_ACCESS sets a specific ACL on the existing object
instead of creating an access category.

Linking an Access Category to an Object: An access category is not an attribute of
any specific file system object. To protect a file system object with an access category, you
link the object to the access category using the SET_ACCESS command with the
-CATEGORY option. The format is

SET_ACCESS pathname -CATEGORY category-name

A r g u m e n t  M e a n i n g
pathname Specifies the object  you want  to  protect.  If  the object  is  in  the current

directory, you can use the objectname alone.
category-name Specifies the access category to be linked with the object. You don't need to

specify the .ACAT suffix. If the access category is in the current directory,
you can use the objectname alone.

Remember that the object to be protected and the access category must both be in the same
directory.

Fifth  Edition  5-11



PRIMOS User's Guide

For example, to protect the file MYFILE with the access category PROTECT.ACAT created
in the previous example, use

OK, SET_ACCESS MYFILE -CATEGORY PROTECT

If you now list access to MYFTLE, you see the following display:

OK,  LIST_ACCESS MYFILE

ACL  protecting  "MYFILE"
(from  access  category  "<BOOKS>FICTION>PROTECT.ACAT"):

M E :  A L L
.GROUP:  LUR
$REST:  NONE

OK,

The second line of the display shows the pathname of the access category protecting the
object.
Figures 5-3 shows how access categories and specific ACLs can protect objects in a
directory.
The access category ONE.ACAT protects MEMO and SUBDIR. The access category
TWO.ACAT exists, but has not been linked to any file system objects. The file ACCOUNTS
is protected by default from YOURDIR, and LETTERS is protected by a specific ACL.
Access categories can be linked only to objects in the same directory. Therefore, when you
move or copy an object to a new directory, any link it has to an access category in the
original directory is broken. For example, if you copy MEMO to another directory, the new
copy loses the protection of ONE.ACAT.
Because an access category is a separate file system object, it continues to exist when you
delete any of the objects linked to it. For example, if you delete MEMO and SUBDIR,
ONE.ACAT continues to exist as a file system object in YOURDIR, even if you have not
linked it to any other files.

Replacing, Modifying, and Deleting Access Categories
Replacing the Contents of an Access Category: If the access category already
exists, the SET_ACCESS command replaces the category's existing access list with the new
access list specified on the command line. The format is identical to that for creating new
access categories:

SET_ACCESS category-name acl [-NO_QUERY]

You need not include the .ACAT suffix when you specify the access category name.

5-12  Fifth  Edition



Protecting Your Files and Directories

Q4130-5LA-32-1

FIGURE 5-3
Access Categories in a Directory

The following example shows you how to change the contents of the access category
PROTECT.ACAT:

OK, SET_ACCESS PROTECT ME:ALL $REST:LUR
"PROTECT.ACAT"  is  an  existing  access  category.
Do  you  want  to  replace  it?  YES
OK,

PROTECT.ACAT now contains the following ACL:

ME:
$REST:

ALL
LUR

Modifying an Access Category: Use EDIT_ACCESS to modify an existing access
category without replacing it entirely. The procedure is the same as using EDIT_ACCESS to
modify a specific ACL except that you supply the pathname of an access category. For
example,

OK,  LIST_ACCESS  TEST.ACAT

Access  category  "TEST.ACAT":
MOZART:  ALL
SALIERI :  LUR
$ R E S T:  N O N E

Fifth  Edition  5-13



PRIMOS User's Guide

OK,  EDIT_ACCESS  TEST.ACAT  SALIERI:  $REST:LUR

OK,  LIST_ACCESS  TEST.ACAT

Access ca tegory "TEST.ACAT
MOZART: ALL
$REST: LUR

OK,

Note
Using SET_ACCESS or EDIT_ACCESS to set or change access to an object protected by an
access category is different from using these commands to create or modify an access category.
If you set or change access to an object protected by an access category, the access category
itself is not changed, although it ceases to protect the object Instead, SET_ACCESS and
EDIT_ACCESS establish a new specific ACL for the object

Deleting  an  Access  Category:  To  delete  an  access  category,  use  the  DELETE
command, as for any other file system object:

DELETE category-name

If you delete an access category, any objects protected by the access category lose the access
category's protection, reverting to default protection.

Default Protection

5-14  Fifth  Edition

ACLs, whether they are specific ACLs or access categories, provide protection for file
system objects in two ways:

• ACLs protect the object(s) to which they are direcdy linked. In the case of a specific
ACL, this means the single file system object to which the ACL is linked. In the case of
an access category, this means any objects to which the access category is linked.

• ACLs that are linked to parent directories protect objects contained in those directories
or lower down in the file system tree, unless those objects are protected by other ACLs.
This is called default protection.

Default protection applies only to objects that are not directly linked to a specific ACL or an
access category. When you create a specific ACL for an object or link an object to an access
category, the object is no longer default protected.
When you carry out any operation on an object that is default protected, PRIMOS treats the
object exactly as if it were directly linked to the ACL that is providing the default protection.
For example, if the default ACL gives you Read access, then you have Read access to the
default-protected object.



Protecting Your Files and Directories

Listing Default Protection
When you use LIST_ACCESS to list access rights to a file system object that is default
protected, you see a display tike the following:

OK, LIST_ACCESS

"<Current  directory>"  protected  by  default  ACL  (from  "<MUSIOCHOPIN")  :
P I A N O :  A L L
.COMPOSERS:  LUR
$ R E S T :  N O N E

OK,

The first line of the display shows the pathname of the object that provides the default
protection.
The following diagrams and discussion illustrate how default protection can affect objects
throughout a tree structure.

Providing Default Protection With Specific ACLs
In Figure 5-4, the specific ACL on top-level directory HERDER provides default protection
for a whole file system tree. The access rights defined by the ACL for HERDER, apply to all
of the file system objects lower down in the tree.

Note
A specific ACL set on a directory does not automatically provide default protection for
subdirectories that are already protected through the password protection system. Passworded
directories must be explicitly converted to ACL protection. If you create new subdirectories
under the ACL protected directory, they are automatically protected by default For an
explanation of the password protection system and conversion to ACL protection, see Appendix
F.

Objects in a default protected tree need not use the default protection. You can provide
different protection for objects in a default protected tree by setting different ACLs on them.
Whatever protection you set lower down in the tree takes precedence over the default
protection.

,■

Fifth  Edition  5-15



PRIMOS User's Guide

Q4130-5LA-22-1

FIGURE 5-4
A Directory Tree Under Default Protection

Figure 5-5 shows how specific ACLs modify default protection.
In Figure 5-5, specific ACLs modify default protection in the following ways:

• The specific ACL on OURDER provides default protection only for FILE1.
• FTLE2 and SUBDIR are each protected by specific ACLs that take precedence over the

default protection provided by the ACL on OURDIR.
• FTLE3 and FELE4 are now default protected by the specific ACL on SUBDIR.

5-16  Fifth  Edition



Protecting Your Files and Directories

Q4130-5LA-23-1

r

F/GLV7E5-5
Default Protection and Specific ACLs

Providing Default Protection With Access Categories
Access categories can also provide default protection. If you link an access category to a
directory, this access category automatically provides default protection for all file system
objects lower in the tree unless you explicitly protect them with other ACLs.
Figure 5-6 shows default protection provided by access categories.
In Figure 5-6, specific ACLs and access categories provide default protection in the
following ways:

• The specific ACL on YOURDIR provides default protection for FTLE.X only.
• The access category GUARD.ACAT is linked with SUBDIR1 and SUBDIR2 and takes

precedence over the default protection provided by the ACL protecting YOURDIR.
• The protection that GUARD.ACAT provides to SUBDER2 also extends by default to

FILE2, FELE3, and FTLE4.
• The access category OTHER.ACAT is linked to FfLEl so that FILE1 is not subject to

default protection by GUARD.ACAT.

Fifth  Edition  5-17



PRIMOS User's Guide

Q4130-5LA-1-2

FIGURE 5-6
Default Protection and Access Categories

Figure 5-7 illustrates how all three protection mechanisms, specific ACLs, access categories,
and default protection, can exist in the same directory tree.
In Figure 5-7, the three protection mechanisms provide default protection in the following ways:

• The specific ACL on YOURDIR provides default protection to SUBDERA and FELEA.
• The specific ACL on FILEB takes precedence over the default protection.
• The access category A.ACAT is linked to SUBDERB, taking precedence over the

default protection provided by the ACL on YOURDIR.
• A.ACAT protects FELEC and SEGDER by default.
• The specific ACL on SUBDERC takes precedence over the default protection provided

by A.ACAT. It also provides default protection for FELED.

Returning to Default Access
You can remove the protection provided by either a specific ACL or an access category and
return an object to default protection using the SET_ACCESS command in the following
format:

SETACCESS pathname

5-18  Fifth  Edition



Protecting Your Files and Directories

Q4130-5LA-30-2

r
r

FIGURE 5-7
Default Protection, Specific ACLs, and Access Categories

where pathname refers to a file, directory, or segment directory from which you wish to
remove protection. For objects in the current directory you can use the objectname alone.
You cannot remove protection from an MFD. For example,

OK, LIST_ACCESS MEMO

ACL  protecting  "MEMO":
B O B :  A L L
$REST:  DALURW

OK, SET_ACCESS MEMO
OK, LIST_ACCESS MEMO

"MEMO"  protected  by  default  ACL  (from  "<BOOKS>ACCOUNTS"):
J E A N :  A L L
$REST:  NONE

OK,

Fifth  Edition  5-19



PRIMOS User's Guide

The original rights to the file MEMO (BOB: ALL $REST: DALURW) have been removed and
replaced  with  the  default  access  rights  for  the  directory  <BOOKS>ACCOUNTS
(JEAN:ALL $REST:NONE).

Matching Access Rights
You can use SET_ACCESS with the -LIKE option to make access rights to one object match
rights to another object. The format is

SET_ACCESS pathname -LIKE reference-pathname

A r g u m e n t  M e a n i n g
pathname Specifies either a file, directory, or segment directory you want to protect or

an access category. If the object is in the current directory, you can use the
objectname alone. If the object is a file, directory, or segment directory, a spe
cific ACL is established to protect it. The ACL grants the same rights as the
ACL protecting the object specified by reference-pathname. If the object is
an access category, the access control list it contains is made identical with the
ACL protecting die object specified by reference-pathname.

reference-pathname Must refer to an existing file system object. If the object is in the current
directory, you can use the objectname alone.

For example, suppose that file OUTLINE is protected by the following ACL:

MARY: ALL
.GROUP: LUR
$REST: NONE

You can establish an identical specific ACL to protect the file REPORT using

OK, SET_ACCESS REPORT -LIKE OUTLINE

Who Can Set ACLs
In systems that use ACLs, the System Administrator sets ACL protection on each user's top-
level directory. This protection provides default protection for your files unless you set other
ACLs within your file tree. You can set other ACLs if your System Administrator gives you
Protect (P) or Owner (O) access to your top-level directory. These rights are described in
detail below, in the section Types of Access Rights.

By changing ACLs you can tailor access to your file system tree in order to share access to
some objects and limit access to others. Similarly, you can give some users more rights than
others to your files. These points are illustrated in Figures 5-8 and 5-9.

5-20  Fifth  Edition



Protecting Your Files and Directories

acl-1 acl-1

TOPDIR BOSS.JANE: ALL
$ R E S T:  L U

acl-2 acl-3 acl-4
SUB.BOB SUB.KAREN SUB.TED

acl-2
BOB:  ALL
$REST: LUR

acl-3
KAREN: ALL
$REST:  LUR

acl-4
TED:  ALL
$REST: LUR

Q4130-5LA-24-2

FIGURE 5-8
ACLs in a Directory Tree

In Figure 5-8, BOSSJANE has ALL rights to TOPDIR. She has granted ALL rights in
SUB.BOB, SUB.KAREN, and SUB.TED to BOB, KAREN, and TED, respectively. The
other users have more limited rights. For example, BOB has ALL rights to SUB.BOB and
can change rights to it at will. However, as a member of $REST, BOB has only List, Use,
and Read rights to SUB.KAREN and SUB.TED, and may not change these rights.
Bob may grant rights to subdirectories lower in his own branch of the tree, as illustrated by
Figure 5-9.
In Figure 5-9, BOB has granted ALL rights to JOE and to himself in SSUBJOE and ALL
rights to JIM and himself in SSUB.JIM. Other users have no rights.
You may wonder if BOSSJANE has been excluded from rights in the subdirectories. As the
rights have been distributed, BOSSJANE is included in the $REST category in the ACLs
protecting the subdirectories. In the case of the directories SUB.BOB, SUB.KAREN, and
SUB.TED, she has LUR rights only. In SSUB.JIM and SSUBJOE, she has no rights at all.

However, BOSS JANE's rights to TOPDIR make it possible for her to gain other rights lower
down in the tree. P rights to a directory always give you the right to change the ACLs on file
system objects in the directory. Therefore, BOSSJANE can change her rights to SUB.BOB,
SUB.KAREN, and SUB.TED. If she grants herself P rights to SUB.BOB, she can also
change her rights to SSUB.JIM or SSUBJOE. The next section gives more details on P
rights.

r
Fifth  Edition  5-21



PRIMOS User's Guide

acl-1
TOPDIR

acl-2
BOB:  ALL
$REST: LUR

acl-2
SUB.BOB

acl-1
BOSSJANE:  ALL
$ R E S T:  L U

acl-3
SUB.KAREN

acl-4
SUB.TED

acl-5
SSUB.JIM

acl-6
SSUBJOE

acl-5
BOB:  ALL
J IM :  ALL
$REST: NONE

acl-6
BOB:  ALL
JOE:  ALL
$REST: NONE

Q4130-5LA-2S-2

FIGURE 5-9
More ACLs in a Directory Tree

Types of Access Rights
The ACL system defines nine types of access rights. These are summarized in Table 5-1 and
described in the following sections.
Some access rights apply to files and some apply to directories. However, rights to directories
can have important effects on your ability to carry out operations on objects in those
directories. Delete access, for example, applies to directories only. You cannot apply delete
access to an individual file. Yet having delete access to a directory allows you to delete files
in the directory.
Access rights applied to a parent directory may also give you the ability to carry out
operations on members of the directory that you cannot carry out on the directory itself. For
example, Delete access to a directory gives you the right to delete objects within the
directory, but not the directory itself. On the other hand, Use rights to a directory give you
the right to attach to the directory itself, but not to any subdirectories.

5-22 Fifth Edition



Protecting Your Files and Directories

Some access rights apply only to files and not to directories. You can still set such access
rights on directories. When you do this, the rights apply by default to objects lower down in
the file system tree.

Protect (P)
Protect is the most powerful of all access rights. If you have protect access to a directory, you
may create or modify the specific ACL protecting the directory. You can also create or
modify any ACLs protecting the objects that are immediate members of the parent directory,
even if those member objects are protected by ACLs that do not include P access.
P access is meaningful only when applied to directories. Even if the ACL protecting a file
specifies P access, you can change the ACL only if you have P access to the parent directory.
The only exception to this rule occurs in the case of access categories. If the rights listed in
an access category include P rights for you, then you can change the access category even if
you don't have P rights to its parent directory. (You cannot, however, create a new access
category unless you have P rights to the directory in which you want to create it.)
Note that P access, unlike other access rights, allows you to carry out certain operations
(changing ACLs) on both a directory and its members. If you have P access to a parent
directory you can change ACLs for both the parent directory and member objects.
As with other rights, if you have P access to a directory, you also have default P access to
any subdirectories. Don't confuse this default P access to member directories with your rights
to set ACLs on member objects. The difference is illustrated by Figure 5-10.

Suppose you have P access to the directory PARENT, and PARENT in turn contains the
directory CHILD. CHILD is protected by an ACL that gives you only DALURW rights, that
is, no P rights. Because you have P access to PARENT, you can change the ACL protecting
CHILD even though you don't have P rights to CHELD.
The difference between being able to change the ACL on CHILD and actually having P
rights to CHELD is significant. For example, CHELD itself contains the directory
GRANDCHILD. Because you don't have P rights to CHELD, you can't set ACLs on
GRANDCHILD unless you first give yourself P rights to CHELD.

Owner (O)
Owner rights are a more restricted version of P rights. If you have O rights to a directory, you
can create or change the specific ACL protecting that directory. You are allowed to establish
an ACL containing any rights except P rights. (You can, however, remove P rights from an
ACL that includes them.)
Unlike P rights, O rights can also be applied to individual files and segment directories. If
you have O rights to a file or segment directory, you can change the ACL protecting it
whether or not you have O or P rights to its parent directory. You can change an access
category if the access category itself grants you O rights.

Fifth  Edition  5-23



PRIMOS User's Guide

acl
you:ALL

You  can  currently  set
access rights for these

three  directories.

you:DALURW
CHILD

GRANDCHILD

You have P access (included in ALL) to
these  directories.
You don't have P access
to  these directories.

Q4130-SLA-26-1

FIGURE 5-10
Protect Access

Unlike P rights, O rights to a directory do not automatically give you the right to set or
change ACLs on objects that are members of the directory. Of course, if you have O rights to
a parent directory, then you have O rights by default to the objects it contains as long as they
are not protected by ACLs that exclude you from O rights. You can change the ACLs on any
objects to which you have this default protection.

Delete (D)
Delete access allows you to delete file system objects. Delete access applies to directories.
Delete access to a directory gives you the right to delete the files and directories it contains. It
does not give you the right to delete the directory itself. In order to delete EPFs (Executable
Program Formats) and segment directories, you also need Write (W) access to those objects.

5-24 Fifth Edition



Protecting Your Files and Directories

Note
Since Delete access applies to whole directories and not to individual files, you can mark
important files as delete-protected with the SET_DELETE command (explained in Chapter 3).

Even if you have Delete access to a directory, you cannot delete member directories if you do
not have the right to delete objects lower down in the file tree. This situation is illustrated by
Figure 5-11.

sc!
you:DALURWX

PARENT

acl
you:LUR CHILD2

acl
you:LUR

CHILD1 CHILD3
R I

GRANDCHILD2 GRANDCHILD 1

FILEC FILED

You can delete  these
file  system  objects.

You have D access
to  these  directories.
You don't  have  D access
to  these  directories.

Q4130-5L.4-27-1

FIGURE 5-11
Delete Access

r
Your Delete access to PARENT gives you the right to delete CHELD2 and CHELD3, even
though CHILD3 is protected by an ACL that does not give you Delete access. You cannot
delete CHELD 1, however. You do not have delete access to GRANDCHILD 1, so you cannot
delete the files it contains, FELEC and FILED. Since these files are below CHELD 1 in the
directory tree, they prevent you from deleting CHILD 1.

Fifth  Edition  5-25



PRIMOS User's Guide

Add (A)
Add access applies to directories. If you have Add access to a directory, you can create new
file system objects in the directory. When you create objects in a directory, they have default
protection from the ACL protecting the directory until you create an ACL that otherwise
protects them.

Note
Unless you have Write (W) access to an object you cannot modify it. Therefore, if you create an
object in a directory to which you have A but not W access, you cannot modify the object later
unless you change the ACL protecting it.

List  (L)
List access applies only to directories. List access to a directory allows you to list the contents
of the directory.

When you have L access to a parent directory, you can always list the names of all the file
system objects that it contains. Even if the parent directory contains directories or other
objects that are protected by ACLs that deny you L access, you can still list the names of
those objects when you list the contents of the parent directory.

Use (U)
Use access applies to directories. Use access to a directory allows you to attach to the
directory and use the directory name in a pathname.
Use access is the most restricted form of access. If you have only Use access to a directory
you cannot carry out such operations as adding files or listing the directory's contents.
Conversely, you must have Use access to a directory in order to be able to carry out any other
operations involving the directory or its contents. If you lack Use access to a directory, and
thus cannot attach to it, you cannot carry out any operations on objects in the directory or
lower down in the file tree.

Read (R)
Read access applies to files. If you have Read access to a file, then you can read the file's
contents (using SLIST, for example) or copy it (using COPY, for example). Read access also
includes the capabilities of Execute (X) access. If you have Read access to an EPF, you can
execute the EPF.
Read access to a directory is not meaningful in itself. (You need L access to list the contents
of a directory.) However, if you have Read access to a directory, then you have Read access
by default to all file system objects lower down in the tree unless they are protected by ACLs
that exclude you from R access.

5-26  Fifth  Edition



Protecting Your Files and Directories

Write (W)
Write access applies to files. If you have W access to a file you can modify it by rewriting it.
If you execute a program that rewrites a file, you must have W access to the file that is to be
rewritten. For example, you can use a text editor to read a file into memory and edit it if you
have R access. However, you must have W access to the file in order to have the text editor
overwrite the old version of the file with the newly edited version. You must have W access
to an EPF or segment directory in order to delete it.
W access to a directory is not meaningful in itself. (In order to modify a directory by adding
and deleting members you must have A and D access.) However, if you have W access to a
directory, you also get W access by default to all file system objects lower down in the tree
unless they are protected by ACLs that exclude you from W access.

Execute (X)
Execute access applies to local EPFs. If you have X access to a local EPF, you can execute it,
but you cannot read or copy it unless you have R access. To execute a remote EPF, you must
have R access.

X access is not directiy meaningful when applied to directories. However, if you have X
access to a directory, then you have default X access to EPFs lower down in the file system
tree unless other ACLs exclude you from X access.

ALL
The ALL designation grants all rights to a user. Specifying OPDALURWX instead of ALL
on the command tine grants the same rights as ALL.

Note
If your system has upgraded to Rev. 21.0 or later from a previous version of PRIMOS, objects
that had ALL rights before have been changed to PDALURWX rights. To add the new O right,
you can use EDIT_ACCESS to either add O rights or restore the ALL designation, which now
includes O rights.

NONE
The NONE designation denies all access. Unless you explicitly specify otherwise, the $REST
group is automatically given NONE as access rights when you create ACLs.

Additional Information on Access Rights
Keep the following points in mind when you set access rights:

• You can set access rights to your current directory. If you list your access rights with
LIST_ACCESS, your new rights are listed. However, PREMOS does not recognize
these rights until you have attached to a directory higher in the file system tree or
reattached to your current directory. Before that, PRIMOS treats your rights as if they
were unchanged.

Fifth  Edition  5-27



PRIMOS User's Guide

Many of the above descriptions specify that rights are meaningful only when they are
applied to directories. PRIMOS allows you to set these rights for other types of file
system objects using SET_ACCESS and EDITACCESS. However, when PRIMOS
executes commands that affect these file system objects, it ignores any access rights that
are not meaningful.
Some PRIMOS operations require specific combinations of access rights. For example,
to change the name of a file system object using CNAME, you must have both D and A
access rights to the directory that contains the object. To copy a file using COPY you
must have R access to the object being copied, and A access to the directory in which it
is to be placed. When copying a directory, you must have R access to all the files lower
in the file system tree and A access to the directory in which the copied directory is to
be placed.

Priority ACLs
Sometimes the operator or System Administrator needs to control all access to the system
(during backups, for example). For this reason, the operator or System Administrator may
temporarily override any user-defined ACL by creating a priority ACL. A priority ACL
defines access for the entire disk. When a priority ACL is active on a disk, the
LIST_ACCESS command displays the priority ACLs contents following the normal ACL
listing.
For example,

OK, LIST_ACCESS

ACL  protecting  "<Current  directory>":
J O H N :  A L L
.GROUP:  ALL
$REST:  LUR

Priority  ACL  in  effect  for  "<Current  directory>":
.ADMINISTRATORS:  ALL

OK,

The LIST_PRIORITY_ACCESS Command
The LIST_PRIORITY_ACCESS command allows you to read the contents of the priority
ACL on any MFD. This is useful if a priority ACL prevents you from getting access to an
MFD. In such a case, you cannot list the priority ACLs contents with the LIST_ACCESS
command. The format of the LIST_PRIORITY_ACCESS command is

LlST_PRIORITY_ACCESS diskname

5-28  Fifth  Edition



Protecting Your Files and Directories

For example,

OK, LIST_PRIORITY_ACCESS FOREST
Priority  ACL  on  partition  "<FOREST>":

D E E R :  A L L
$REST:  NONE

OK,

If no priority ACL exists on the disk, PRIMOS displays the following message:

Priority  ACL  not  found.  <FOREST>  (l ist_priority_access)
ER!

Fifth  Edition  5-29



Command-line Features

Several command-line features allow you to carry out many repetitious operations with a
single command. These features allow you to

• Enter several commands on one line
• Use iteration to repeat commands
• Use wildcard characters to refer to several related objectnames in a single command

argument
• Use treewalking to search for related files throughout a file system tree
• Use name generation characters to create several related objectnames with a single

command
• Suppress some features of command tine interpretation

The PRIMOS Commands Reference Guide provides more detailed information on each
feature discussed in this chapter. The following chapters also deal with more advanced
command line features. Chapter 7 shows you how to use the command-line editor
EDIT_CMD_LENE (ECL) to correct errors and repeat commands. Chapter 8 explains the
ABBREV command, which you can use to create single word abbreviations for frequently
used command lines. Chapter 8 also tells you how to use global variables to replace
frequendy used character strings in your command lines.

Multiple Commands
You can give several commands on one tine if you separate the commands with semicolons
(;). For example, the command line

OK,  ATTACH  MYDIR;  LD

attaches you to MYDER and lists the contents of the directory.

r
Fifth  Edition  6-1



PRIMOS User's Guide

Iteration

Errors in Multiple Commands
In a line containing several commands, one command may include an error. If this happens,
PREMOS still tries to execute the remaining commands on the line. For instance, if PRIMOS
is unable to attach you to MYDER in the above example, it still lists the contents of whatever
directory you are currently attached to.

Wildcards
You can use wildcard characters to specify a group of objectnames with a single command
argument. Each character stands for one or more elements in an objectname. The four
wildcard characters are listed in Table 6-1.

You can use iteration to specify a list of two or more objects as arguments for one
command. The list must be enclosed in parentheses. Items in the list must be separated by one
or more blanks or by commas. For example, the command

OK,  DELETE  (PREFACE  INTRO  CHAP1)

deletes the three files PREFACE, ENTRO, and CHAP1 from your current directory.
You can replace more than one argument in a command with an iteration list. Each list must
be enclosed in parentheses, and the lists must be separated by one or more blanks or by
commas. For example, the command

OK, COPY (ACCT PAID DUE) (ACCOUNTS PAYMENT PASTDUE)

copies the file ACCT as ACCOUNTS, PAID as PAYMENT, and DUE as PASTDUE.
You can use an iteration list as one part of a command argument. For example, the command

OK, COPY BOOK>(INTRO CHAP1 CHAP2) NEWBOOK>(FRONT SEC1 SEC2)

copies the three files ENTRO, CHAP1, and CHAP2 from the directory BOOK into the
directory NEWBOOK, and names the new files FRONT, SEC1, and SEC2, respectively.
Further, you can use two iteration lists separated by a period (.) in one argument. Each list
specifies one component of the argument. This creates a series of arguments from all
possible combinations consisting of one element from the first list and one element from the
second list. For example, the command

OK,  DELETE  (YOUR,MY,HIS).(MEMO,DRAFT)

deletes YOUR.MEMO, MY.MEMO, HIS.MEMO, YOUR.DRAFT, MY.DRAFT, and
HIS .DRAFT from your current directory.
You cannot combine more than two iteration lists in a single argument.

6-2  Fifth  Edition



Command-line Features

TABLE 6-1
Wild Characters

Character  Function

@@ Replaces any number of characters in any number of components within a
filename or directory name.

@ Replaces any number of characters within one component of a filename or direc
tory name. Stops matching at the period (.) that separates components.

+ Replaces a single character, except a period (.).

A Negation character; matches all names that do not match the rest of the wildcard
name. If you use the caret (A), it must be the first character in the wildcard name.
Only one wildcard negation character can be used in a command line.

The following examples show you how to use each character. Consider the following
directory:

<MYMFD>WORK>BOOK (ALL access)
15  records  in  this  directory,  15  total  records  out  of  quota  of  0.

13  Files.

C l C2 C3 C4
NCI NC2 NC3 NC4
PROGRAM.BIN PROGRAM.FTN PROGRAM.LIST PROGRAM.RUN
STATS.LIST

You can select various files to be deleted by using the DELETE comand with different
wildcard characters. For example, if you are currently attached to the directory BOOK, then
the command

OK,  DELETE  @@

deletes all the files from the directory (without deleting the directory itself).

If you are currendy attached to WORK, you can also delete all of the files from BOOK with
the command

OK, DELETE *>BOOK>@@

Note
When you use wildcard characters in this way, they must be in the last element of the pathname.
You use wildcard characters in intermediate positions for treewalking file tree searches.
Treewalking is explained in the next section. You cannot use wildcard characters as the first
element of a pathname. For example, @ @ >BOOK is illegal.

Fifth  Edition  6-3



PRIMOS User's Guide

If you are currendy attached to BOOK, you can delete all the files with single component
names (Cl, C2, C3, C4, NCI, NC2, NC3, NC4) using

OK,  DELETE  @

You can delete only files with two component names (PROGRAM.FTN, PROGRAM.LIST,
PROGRAM.BEN, PROGRAM.RUN, and STATS LIST) using

OK,  DELETE  @.@

If you want to delete only the PROGRAM.^M/7ix files, use

OK, DELETE PROGRAM.@

If you want to delete just the files Cl, C2, C3, C4, use

OK,  DELETE  C+

If you want to delete everything except Cl, C2, C3, C4, use

OK,  DELETE  ~C+

Note
Commands that take more than one argument can include wildcards in only one argument. For
example, you cannot use COPY PROGRAM.® OLDPROG.@. When you want to create a new
set of objectnames using wildcards, you must use name generation characters, discussed below
in the section Name Generation.

Wildcards With Iteration Lists
You can use wildcards and iteration lists in the same command argument. For example, the
command

OK,  DELETE  @.(BIN  LIST)

deletes all the files in the current directory that are suffixed with .BEN or LIST. In the above
example, this command line deletes PROGRAM.BEN, PROGRAM.LIST, and STATS.LIST.

Wildcard Options
Wildcard options are used in a command line that contains wildcard characters to restrict the
set of files selected. Wildcard options can restrict the selection in two ways:

• By selecting only file system objects of particular types (directories, files, segment
directories, or access categories)

• By selecting only file system objects last modified before or after a particular date and time

When you give a command with a wildcard argument, PRIMOS can also query you to verify
that you want the command carried out on each file selected. Certain options enable or
disable this verification.

6-4  Fifth  Edition



Command-line Features

Table 6-2 lists the wildcard options. You can use them anywhere in the command line after
the  command.  For  example,  to  delete  all  files  from  the  current  directory  that  were  last
modified before April 15, 1987 at 11 p.m. use the command

OK,  DELETE  @@  -BEFORE  87-04-15.23:00:00

Wildcard  options  are  explained  in  more  detail  in  Chapter  4  of  the  PRIMOS  Commands
Reference Guide.

TABLE  6-2
Wildcard Options

Option Selects

-ACCESS_CATEGORY

-ACCESSED_AFTER date.time

-ACCESSED_BEFORE date.time

-AFTER date.time

-BACKEDUP_AFTER date.time

-BACKEDUP_BEFORE date.time

-BEFORE date.time

-CREATED_AFTER date.time

-CREATEDJBEFORE date.time

-DIRECTORY

-FILE

-MODIFIED_AFTER date.time

-MODIFIED_BEFORE date.time

-NOJVERIFY

-RBF

-SEGMENT_DIRECTORY

-VERIFY

Access categories.

Objects last accessed on or after date.time.

Objects last accessed before date.time.

Objects last modified on or after date.time.

Objects saved by BACKUP on or after date.time.

Objects saved by BACKUP before date.time.

Objects last modified before date.time.

Objects created on or after date.time.

Objects created before date.time.

MFDs, directories and subdirectories.

SAM or DAM files.

Same as -AFTER.

Same as -BEFORE.

PRIMOS executes the command for all selected objects,
without asking for verification of each object.

ROAM files.

SAM or DAM segment directories.

PRIMOS lists each object selected and asks whether to
execute the command for that object. (Default)

Fifth  Edition  6-5



PRIMOS User's Guide

Note
In Table 6-2, the format of date.time can be any of the following:

yy-mm-dd.hh:mm:ss  'dd  mon  yy  hh:mm:ss'
mmlddlyy.hh:mm:ss  'dd  mon  yy.hh:mm:ss'

The two formats on the right must be enclosed in single quotation marks; mon stands for a
month's first three characters (JAN, FEB, for example). All the other letters represent one-digit
or two-digit numbers. The hh field uses 24-hour notation. Omitted date fields are replaced by
current date information; omitted time fields are replaced by zeros.

Using the LD Command With Wildcards
The LD command as introduced in Chapter 3, without arguments or options, lists the contents
of the current directory. You can use a more general form of the LD command with
wildcards. The format is

LD [pathname] [objectnamel...objectnamel4] [options]

A r g u m e n t  M e a n i n g
pathname The pathname of an object you want to list. PRIMOS displays the object's

parent directory header followed by the objectname. If you give only an
objectname, PRIMOS looks for the object in your current directory. If the
object specified by pathname doesn't exist, PRIMOS replies with the message -»
No entries selected. You can list several objects by using wildcards in
the last element of the pathname. The LD command without arguments is thus
equivalent to typing

OK,  LD  @@

objectnamel. . . You can specify a maximum of 14 more objectnames to be listed in the same
directory as the object specified by pathname (that is, fifteen objectnames in
total). Normally, you specify these objectnames with wildcards to select
groups of objects.

options Various options allow you to select the format and level of detail of the list
ing. These are explained in the PRIMOS Commands Reference Guide.

Examples: Suppose that you use the LD command without options to list all the files in
your current directory:

OK,  LD

<MATH11>Y0URDIR>STATS  (ALL  access)
10  records  in  this  directory,  10  total  records  out  of  quota  of  0.

6-6  Fifth  Edition

8  Files.

ANOVA.BIN ANOVA.FTN INPUT.RUN SAMPLE.COMO
STATS.BIN STATS.FTN STATS.RUN TEST.BIN



Command-line Features

You can list all of the files with the .BEN suffix, as follows:

OK,  LD  8.BIN

<MATHll>YOURDIR>STATS  (ALL  access)
10  records  in  this  directory,  10  total  records  out  of  quota  of  0.

3  Files.

A N O V A . B I N  S T A T S . B I N  T E S T . B I N

In the sample directory, all the filenames have two components. A more general version of
the above command, which lists filenames with any number of components, is

OK,  LD  @@.BIN

You can list all files with the .BEN and .RUN suffixes, as follows:

OK, LD @@.BIN @@.RUN

<MATHll>YOURDIR>STATS  (ALL  access)
10  records  in  this  directory,  10  total  records  out  of  quota  of  0.

5  Files.

A N O V A . B I N  S T A T S . B I N  T E S T . B I N
INPUT.RUN  S  TAT  S.RUN

To list objects in a different directory, give the full pathname. For example, the command

OK,  LD  MYDIR>MAIL

lists the name of the directory MAIL (if it can be located in MYDER):

<PUBL2>MYDIR  (ALL  access)
32  records  in  this  directory,  57  total  records  out  of  quota  of  0.

1  Directory.

MAIL

You can list the contents of MAEL as follows:

OK LD MYDIR>MAIL>@@

<PUBL2>MYDIR>MAIL  (ALL  access)
4  records  in  this  directory,  4  total  records  out  of  quota  of  0.

3  Files.

L E T T E R 1  L E T T E R 2  L E T T E R 3

Fifth  Edition  6-7



PRIMOS User's Guide

Treewalking
You can use wildcards to make a command act on designated objects throughout a file
system tree. This is called treewalking.
You specify a treewalking pattern by using a wildcard name in an intermediate position
within a pathname. For example,

OK, LD BOOKS>@@>FICTION
You cannot use wildcard characters in the first position of the pathname, and you can only
use wildcard characters in a single intermediate position.
The final position of the pathname may also contain a wildcard name. For example,

OK, LD BOOKS>@@>FICTION>POE.@

Treewalking searches for objects throughout the file system tree below the specified starting
directory. A file system tree beginning with a specified directory is called a directory tree.
Figure 6-1 shows an example of a directory tree. Treewalking searches the directory tree
below the starting directory.
When PREMOS makes a treewalking search, it breaks the wildcarded pathname at the first
wildcard character to make a pattern for finding objects. The search locates all objects whose
pathnames match the two halves of the specified pathname. For example, if you are attached
to the directory BOOKS in Figure 6-1, then the command

OK, LD BOOKS>@@>@@

causes PRIMOS to search for all objects in the directory tree whose pathnames match the pattern
BOOKS> . . . @@>@@

In other words, the search matches all objects whose pathnames begin with BOOKS > and end
with a pattern that matches @@>@@.
PRIMOS adds whatever intermediate directory names are necessary to match the pattern. For
the directory tree shown in Figure 6-1, the search matches the following patterns:

BOOKS>@@>@@
BOOKS>FICTION>@@>@@
BOOKS>FICTION>RECENT>@ @>@ @

In this case, the LD command lists the contents of all the directories in the directory tree
below BOOKS.
To list the contents of all directories in the directory tree below FICTION, use the command

OK, LD BOOKS>FICTION>@@>@@
To list all objects with the objectname suffix .DOC in the directory tree below FICTION, use
the command

OK, LD BOOKS>FICTION>@@>@@.DOC
The listed objects are shaded in Figure 6-1.

6-8  Fifth  Edition



Command-line Features

r

Q4I30-SLA-29-1

FIGURE 6-1
Sample Directory Tree

Fifth  Edition  6-9



PRIMOS User's Guide

To list the contents of all the directories whose names begin with B, use the command

OK, LD BOOKS>B@>@@

In this case, the command lists the contents of the directory BELLOW.

Treewalking Options
Treewalking normally examines the entire directory tree beginning with the first directory
below the starting directory. You can narrow the search or reverse the order of search by
using treewalking options. The treewalking options are listed in Table 6-3.

TABLE  6-3
Treewalking Options

O p t i o n  M e a n i n g

-WALK_FROM n Carries out the treewalk in directories at levels greater than or equal to n.
The default is WALK_FROM 2, which executes the command at the first
directory under die starting directory. For execution in the starting
directory, specify -WALKJROM 1.

-WALK_TO n Carries out die treewalk in directories at levels less than or equal to n.

-BOTTOM_UP Carries out the treewalk in bottom-up order, starting at the deepest level
and proceeding to the higher levels.

Figure 6-2 shows how PRIMOS determines directory levels. For example, the command

OK, LD ORCHARD>@@>@@ -WALK_FROM 1 -WALK_TO 3

lists the contents of the directory ORCHARD, its subdirectories, and their subdirectories.

You can reverse the order in which the directories are listed using the following command
line:

OK, LD ORCHARD>@@>@@ -WALK_FROM 1 -WALK_TO 3 -BOTTOM_UP

Figure 6-2 shows where a bottom-up treewalk starts in the sample directory tree.

Name Generation
You use wildcard characters to find a series of objectnames in a directory. Similarly, you can
use name generation characters to create a series of new objectnames. Name generation can
also allow you to find objects with similar names more precisely than wildcards.

6-10  Fifth  Edition



Command-line Features

Level 1

Level 2

Level 3

The  Bottom Up  Treewalk
begins by listing the files in
one of  these  directories.

Q4130-SLA-33-2

FIGURE 6-2
Treewalking Directory Levels

To use name generation you need

• A source pathname, from which to create new names. This is usually the first
argument in a command line.

• A generation pattern, which tells PRIMOS how to create new pathnames from the
source pathname. This is usually the last element of one or more subsequent arguments
in the command line. Generation patterns are made up of name generation symbols and
literal strings.

The name generation characters are listed in Table 6-4.

Fifth Edition 6-11



PRIMOS User's Guide

TABLE 6-4
Name Generation Symbols

S y m b o l  M e a n i n g

= Copies a single component from the source name to the generated name

== Copies one or more components from the source name to the generated name

A= Excludes a single component of the source name from the generated name

A== Excludes one or more components of the source name from the generated
name

literal-string Replaces a component of the source name with literal-string

+literal-string Adds the component given by literal-string to the generated name

Note
Only one double equal sign (==), with or without the caret (A) symbol, may appear in a name
generation pattern.

Examples
Suppose  that  you  want  to  copy  the  files  PROGRAM.FTN,  PROGRAM.BIN,
PROGRAM.LIST,  and PROGRAM.RUN from the current  directory  to  the directory
UPDATE. You can use name generation to create names for the copies.

To keep the same names, use the command line

OK,  COPY  PROGRAM.@  UPDATE>==

To copy and rename the files NEWPROG.sm//u, use

OK, COPY PROGRAM.@ UPDATE>NEWPROG.=

This command tine creates the files NEWPROG.FTN, NEWPROG.BEN, NEWPROG.LIST,
and NEWPROG.RUN.

If you want to generate names with more components than the source name, use the plus sign
(+). For example, to copy the same files and rename them OLD.PROGRAM.5«/7a, use

OK, COPY PROGRAM.@ UPDATE>+OLD.==

This  command  tine  creates  the  files  OLD.PROGRAM.FTN,  OLD.PROGAM.BEN,
OLD.PROGRAMLIST, and OLD.PROGRAM.RUN.

6-12  Fifth  Edition



Command-line Features

You can eliminate a component with the caret (A) symbol. For example, if you want to copy
and rename the files OLD.PROGRAM..yu/7u as OLD.suffix, use

OK, COPY OLD.PROGRAM.@ UPDATE>=.A-.=

This command creates the files OLD.FTN, OLD.BEN, OLDLIST, and OLD.RUN.

Selecting File System Objects
You can use name generation to find a series of objects with similar names as well as to
create new files. For example,

OK,  LD  CHAP.A  =.B  =.C  =.D

lists the files CHAP.A CHAP.B CHAP.C, and CHARD (if they are in the current directory).
Name generation can be a more precise way of selecting files than wildcards. For example,
you can also list these files with

OK,  LD  CHAP.@

However, this command line also lists any other files with name CRAP.suffix.
For a more detailed discussion of name generation, and many more examples, see the
PRIMOS Commands Reference Guide.

Syntax Suppression
You can use the tilde character (~) at the beginning of a command line to suppress certain
features of command line interpretation. Such syntax suppression is especially useful when
you are working with abbreviations and global variables, introduced in Chapter 8. Chapter 8
includes an example of syntax suppression.

Fifth  Edition  6-13



Command-line  Editor

The PRIMOS command-line editor, EDIT_CMD_LINE (ECL), lets you edit, save, and
redisplay PRIMOS command lines. You do not need to retype entire command lines if you
enter wrong characters by mistake. With ECL you can

• Move the cursor to the beginning or end of the line, or move it a specified number of
characters or words in either direction

• Delete a specified number of characters or words, or delete everything to the right of
the cursor

• Edit and insert command line text
• Locate, redisplay, and edit as many as 200 of the most recent commands executed

during a terminal session
• Save commands in a file for subsequent reexecution
• Redisplay deleted command line text
• Expand partially entered pathnames
• Perform all of the above functions on the local system or on a remote system across a

network

You can perform most of these functions with just one or two keystrokes. The keystrokes
required are very similar to those used within the EMACS editor. However, you do not have
to know EMACS to use ECL.
The first part of this chapter shows you how to get started with ECL. The second part
explains more advanced ECL features. A summary of ECL subcommands and descriptions
of ECL options appear at the end of the chapter.

Getting  Started
You invoke ECL and control many of its features with the EDIT_CMD_LENE command.
The format is

EDIT_CMD_LINE options

Fifth  Edition  7-1



PRIMOS User's Guide

This chapter introduces several basic options, and briefly lists many more. For a complete
discussion of the ECL command and all its options, see the PRIMOS Commands Reference
Guide.

To begin using the command-line editor, enter the ECL command with the -ON option:

OK,  ECL  -ON

After you give the ECL command, you can use the features of the command-line editor
whenever you are at PRIMOS command level.

Note
The command-line editor is not yet available in most subsystems. When you are working with a
subsystem that does not include ECL, you must use the editing features normally available with
the subsystem, even if you are using ECL at PRIMOS command level. For example, if you
invoke ED after invoking ECL, you still must use the PRIMOS default editing procedures on the
ED command lines you type.

To disable ECL, enter

OK,  ECL  -OFF

For convenience, you may want to add the ECL -ON command line to your login file so that
ECL is in effect as soon as you log in.

By default, ECL uses whatever PRIMOS ready and error prompts are in effect when you
invoke ECL. You can have ECL display different prompts. See the section, Customizing
Your ECL Prompts.

This section covers ECL basics:

• ECL command conventions
• Aborting ECL commands
• Moving the cursor on the current line
• Deleting characters and tines
• Refreshing the cunent command line
• Redisplaying the previous command line
• Searching for previously entered text

ECL Command Conventions
All ECL commands begin with either I esc | or a combination of I ctri | and another key.

For example, the command to move the cursor to the beginning of a line is I ctri | [a]. To
execute this command, press I cm | and [a] simultaneously.

With | Esc | commands, you must press and release I Esc 1 before you press the following
characters. For example, the command for a reverse search is I esc | [~r"1. To execute this
command, first type | Esc I, then type [rJ

7-2  Fifth  Edition



Command-line Editor

You can precede ECL commands by a numeric count that represents the number of times to
repeat that command. To repeat an ECL command, press I esc | and then press the digits for
the number of times you want to repeat the next command. (I Esc | \J} tells ECL to perform the
next ECL command entered three times.) Refer to the section, Repeating ECL Commands,
for more information.

The position of the cursor determines which part of the tine is affected by the ECL command
entered. Some ECL commands affect text to the left of the cursor, some affect text to the
right of the cursor, and some affect only the character over which the cursor is positioned. In
sample command lines, the underscore character (_) represents the cursor position.

Moving the Cursor on the Current Line
The most basic ECL cursor commands move the cursor to the beginning or end of a line, and
forward or backward by one or more characters. Table 7-1 shows the commands to perform
these functions. Individual sections describing each command follow the table.

TABLE 7-1
Cursor-moving Commands

ECL Command Position Name

Beginning of line

End of line

Back one character

Forward one character

I Ctrl | | A | beginjine

I Ctrl | | E | endjine

I Ctrl | | B | back_char

I Ctrl | | F | forward_char

Note
Each ECL command has a command name. Command listings show the command name in the
last column. For example, in Table 7-1, the command to position the cursor at the beginning of
the line is called beginjine. The section, Extended Commands, later in this chapter, shows you
how you can invoke ECL commands using their command names.

Moving  the  Cursor  to  the  Beginning  of  the  Line:  To  move  the  cursor  to  the
beginning of the line, press I cm \ \T\. For example, suppose that you have just entered the
command line below. The underscore character represents the cursor, shown at the end of the
command tine.

OK,  *>STATUS_

What you really wanted to do was attach to the STATUS directory. Instead of using the
PRIMOS erase or kill characters and then retyping the entire command tine, use the ECL
I ctri | [~a] command.

OK,  *>STATUS_
[____ __]
OK,  *>STATUS

Fifth  Edition  7-3



PRIMOS User's Guide

\ ctri | |~a~1 positions the cursor on the first character of the tine, in this case, the asterisk. Now
enter the PRIMOS ATTACH command and press I Return | to execute the command line.

OK,  ATTACH *>STATUS

Notice that the cursor remains positioned on the asterisk. When you enter characters on a line,
any existing characters to the right of the cursor are shifted to the right. ECL automatically
wraps as many as 158 characters of command line input.
Also note that when you press I Return |, PRIMOS receives and processes all characters on the
command tine, regardless of the cursor's position.

Moving the Cursor to the End of the Line: To move the cursor to the end of the line,
press | ctri I [¥]. Suppose that in the previous example, you wanted to edit a file in the
STATUS directory. The cursor is currendy in the middle of the command line, as shown
below.

OK,  ATTACH *>STATUS
|  Ctrl  |  [T]
OK,  ATTACH  *>STATUS_

Now you can enter an additional command, using a semicolon (;) to separate the two
commands.

OK,  ATTACH  *>STATUS;  ED  JUN.3CL

Unlike 1 ctri | [a"], which positions the cursor on the first character of the command line,
1 ctri | r_l positions the cursor after the last character on the line. This allows you to add text
to the end of the line.

Moving the Cursor Backward: To move the cursor backward on the command line
without deleting text, press I ctri | [~b~| . If you press I ctri | [~b~| once, the cursor moves back
one character. If you hold the two keys down instead of pressing them briefly, the cursor
continues to move backward until you release the keys.

Take a look at the following command line.

OK,  SLIT MANNERS.

To change SLIT to SLIST, press I ctri | |~b~| until the cursor is positioned on the T. Then
enter S, as shown below.

OK, SLIT MANNERS_
1  C t r l  |  | ~ B ~ |  H o l d  t h e  k e y s  d o w n .
OK, SLIT MANNERS
DO
OK, SLIST MANNERS

Notice that the character entered appears to the left of the character at which the cursor is
positioned. The text after the new character is shifted to the right to make room.

7-4  Fifth  Edition



Command-line Editor

Moving the Cursor Forward: Press I cm | [~f~| to move the cursor forward one or more
characters. As with all I cm | commands, if you hold the two keys down for several seconds,
the cursor continues to move until you release the keys.

Deleting Characters and Lines
ECL observes erase and kill characters specified with the PREMOS TERM command unless
you indicate otherwise using the ECL -NO_OBEY_ERKL option. This option is documented
in the options list at the end of this chapter. ECL also has its own commands that delete
characters and lines, shown in Table 7-2.

TABLE  7-2
Delete Commands for Characters and Lines

E C L  C o m m a n d  D e l e t i o n  C o m m a n d  N a m e

I  ctri  |  |~D~|  Character  that  cursor  is  on  delete_char

I  ctr i  |  ITT]  Previous  character  rubout_char

I  Ctrl  I  |~K~[  Rest  of  line  (from cursor  to  end)  kill_line

I  ctri  |  (J/J  |  ctri  j  [w]  Entire  line  kiU_region

Notes
I ctri | [iT] works the same way as the PRIMOS erase character (defined with the TERM
-ERASE command) and the | Backspace] key.
I ctri | |Tj] I ctri | |~wj works the same way as the PRIMOS kill character. See the section,
Deleting Regions, for more information on | Ctrl | pw|.

With ECL you also can delete words in either direction, as well as regions of text. These other
delete commands are described in the section, Advanced ECL Commands, later in this chapter.
The section, Redisplaying the Previous Command Line, includes an example of | ctri | [~d~|.

Refreshing the Current Command Line
Pressing | ctri | [~L~| redisplays, or refreshes, the current ECL command line. | ctri | [JJ is
especially useful if you receive a message from a phantom or another user before you have
completed an ECL function. This may disrupt the display of your command line (although it
does not alter the version of the line that ECL maintains internally). You can restore the
display with | ctri | pT|.

Redisplaying the Previous Command Line
Press I ctri I [~zj to redisplay the most recendy executed command line. | ctri | [~zj is
particularly useful if you misspell something on a command tine just executed. The
following example illustrates this point.

OK, COPY JAKE>CARD>ENGINE.PROB CARS>COMPLAINTS>JAKE.ENGINE

Fifth  Edition  7-5



PRIMOS User's Guide

In this command tine the pathname of the file being copied is incorrect; the CARD directory
should be the CARS directory. Consequently, when you press I Return |. PRIMOS displays an
error message. The following steps show how to correct this error.

1. Press I ctri 1 |~z~| to redisplay the command line, with the cursor positioned after the last
character on the line.

OK, COPY JAKE>CARD>ENGINE.PROB CARS>COMPLAINTS>JAKE.ENGINE_

2. Press I ctri I |~b~1 to move the cursor back to the D in CARD.

OK, COPY JAKE>CARD>ENGINE.PROB CARS>COMPLAINTS>JAKE.ENGINE

3. Press I ctri | Q5J to delete the D.

OK, COPY JAKE>CAR>ENGINE.PROB CARS>COMPLAINTS>JAKE.ENGINE

4. Enter [Tj.

OK, COPY JAKE>CARS>ENGINE.PROB CARS>COMPLAINTS>JAKE.ENGINE

5. PTCSS I Return

ECL remembers the last 200 command lines executed during the current login session. This
list of commands is called the command history. Pressing | ctri | [_] in succession lets you
individually review the command history. The section, Command History, describes other
ways to use the list of commands that ECL remembers.

Searching for Previously Entered Text
You can redisplay a command line from the command history by specifying a unique search
string. ECL has two commands, I Esc | ["§] (forward_search) and | esc | |~r~| or | ctri | [TJ
(reverse_search), that prompt for a character string. I esc| |~r~| searches backward through
your command lines for the string entered, beginning with the most recendy entered
command line. I Esc| [TJ begins the search with the oldest command line in the command
history.
After you enter the string, ECL performs a case-insensitive search in the specified direction
for the most recendy executed command line containing that string. ECL searches the last
200 PRIMOS command lines entered until it finds the string specified. If the string is not
there, the terminal bell beeps.
ECL maintains a search buffer containing the 10 most recendy requested search strings. If
you press I Return | at the search prompt instead of entering a string, ECL looks for the most
recendy entered search string.
The following example shows how to use the search command to find a previously entered
pathname. When you press I Esc| [TJ on a command line, ECL displays its search prompt,
shown below. Enter the string that you want to find. For example,

R-search:  DINOS

7-6 Fifth Edition



Command-line Editor

ECL displays the last command line entered that contains the string DENOS.

OK,  EMACS  GIFTS>FRIENDS>DINOS

You can edit this line as usual. To execute the command tine, press I Return |.
Table 7-3 shows the ECL commands for searching through command-line entries.

TABLE  7-3
Search Commands

ECL Command Direction Command Name

Backward

Forward

Esc | | R | or | Ctrl IM reverse search

Esc  [si forward_search

Aborting ECL Commands
Enter | ctri | [g] to abort an ECL operation in progress and display the last command tine in
the command history. This is especially useful if you are searching for or displaying previous
command lines and want to return to the end of the command history.

Advanced ECL Commands
This section describes more advanced functions that you can perform with ECL:

Repeating ECL commands
Moving and deleting words
Changing case and character position
Moving and copying regions of text
Restoring copied and deleted text
Using the command history
Expanding pathnames
Referencing other directories
Expanding abbreviations
Using command macros
Customizing your ECL prompts
Using the password command
Using extended commands
Using ECL across a network

Fifth  Edition  7-7



PRIMOS User's Guide

Repeating ECL Commands
ECL lets you specify a number of times to repeat the next ECL command you enter. Use the
esc_digit repeat command:

1. Press I Esc | and the digit for the number of times you want the command executed. For
example, I Esc | [TJ.

2. Enter the ECL command you want repeated.

You must specify the number of times before entering the ECL command to be repeated. For
example, if the cursor is in the middle of a command tine and you want to delete the two
characters to the right of the cursor, press I Esc | |T] | ctri | [pi. To delete 12 characters to the
right of the cursor (including spaces), press | Esc [ [TJ [TJ | ctri | [b~[.
The multiplier command, I cm | [TJ], works similarly to the esc_digit repeat command. To
repeat an ECL command 12 times you can use either I ctri | [TTJ [TJ [JJ or | Esc | [TJ [JJ. Unlike
esc_digit, however, I cm | [UJ used alone repeats the next command four times. For instance,
pressing I ctri | [TJ] | ctri | [TJ deletes the next four characters on the command line. When
preceded with a repeat count, | cm | [TTJ multiplies that count by four. For example, if you press

| Ctrl | |Tj~] | Ctrl | [TJ] | Ctri | [F]

ECL moves the cursor forward by 16 (4 x 4) characters. You can also use the esc_digit and
multiplier commands together. For instance,

| Esc 1 [T] fJJ | Ctrl I [Jj] I Ctrl | [TJ

moves the cursor ahead 48 (12 x 4) characters. If you use these two commands together, you
must enter the repeat command first.

You can also repeat the previous ECL command with | ctri | [c"|. To perform the previous
ECL command more than once, enter the esc_digit or multiplier command followed by
1 ctn | [c]. If the previous command also had a repeat count associated with it, ECL multiplies
the two counts and performs the previous command that number of times.

ECL never considers I cm | [c~| as the previous command. Therefore, if you enter [ cm | [c]
twice, ECL reexecutes the command entered before the first 1 ctri | [c~| command.
Table 7-4 summarizes the commands to repeat ECL commands.

Moving and Deleting Words
ECL defines a word as a string of alphanumeric and underscore characters only; spaces and any
other characters, such as punctuation, are word delimiters. Therefore, ECL considers the string

DATE; SLIST SQUID_RECIPE

to be three words long, while

DATE; SLIST SQUID.RECfPE

is four words long, because it contains the delimiter (.).
7-8 Fifth Edition



Command-line Editor

TABLE  7-4
Repeat and Multiplier Commands

ECL Command Action Command Name

I Esc | n or | cm | [TJ] n Repeats next ECL command n times esc_digit

1 Ctrl | [TJ] Repeats next ECL command four times multiplier

| Esc | n | Ctrl | [TJ] Repeats next ECL command a multiple
n of four times multiplier

| cm 11 u 11 ctri | [TJ] Repeats next ECL command 16 times

| Ctri | [T| Repeats previous ECL command reexecute

You can instruct ECL to consider all legal PREMOS filename characters as valid characters
rather than as word delimiters with the ECL -ENTRY option. Refer to the section, ECL
Command Options, at the end of this description.
Table 7-5 lists the commands for cursor movement by words and for deletion of words.

TABLE 7-5
Moving the Cursor and Deleting by Words

ECL Command Action Command Name

| Esc _€
| Esc CE]

| Esc __]
| Esc 1 Ctrl |  |  H |
or
| Esc | Backspace|

Moves backward one word

Moves forward one word

Deletes next word

Deletes previous word

back_word

forward_word

delete_word

rubout  word

Changing Case and Character Position
ECL permits some basic character modifications:

• Changing characters and words to uppercase
• Changing characters and words to lowercase
• Transposing two characters to the left of the cursor

ECL defines words as described in the previous section, Moving and Deleting Words.

Fifth  Edition  7-9



PRIMOS User's Guide

Table 7-6 shows the ECL commands that perform uppercase and lowercase conversion, as
well as character transposition. The case change occurs from the character where the cursor is
positioned to the end of the word.

TABLE 7-6
Case and Character Position Commands

ECL Command Action Command Name

Changes lowercase character to upper1  Ctrl  ||M toggle_case
case or vice versa

| Esc | QTj Changes word to all uppercase upcase_word

| Esc | LU Changes word to all lowercase

Transposes two characters to left of

dncase_word

1  Ctrl  ||T| twiddle
cursor

Defining, Copying, and Deleting Regions of Text
With ECL you can define a region of text that you can copy, delete, and insert into one or
more command lines. A region is a block of text that you define to ECL by specifying its
boundaries. This section describes defining, copying, and deleting regions. The next section
describes how to restore copied and deleted regions.

Defining Regions of Text: Use I cm | \@\ to define one of the region's boundaries, called
the mark. To define the other boundary, move the cursor to the place where you want the
region to end. The region is the area of text between the mark and the new cursor position.
Within ECL, the maximum size for a region is approximately one PRIMOS command line (a
maximum of 158 characters). By default, the mark is located at the first position to the right
of the prompt.
The mark does not appear on your terminal screen; your command line looks identical
regardless of whether or not you have defined a mark position. To check a region's current
boundaries, use I cm [ [xj | cm j [xj to swap the mark and cursor positions. I cm | [xj
I cm | [xj does not change the boundaries of the region.

Copying Regions of Text: I Escape | |"w] copies a defined region and stores it in a buffer
for subsequent retrieval. I Esc | [w] does not change your command line; the region that you
define and copy is still displayed. However, you can redisplay and reexecute the commands
in the copied region by using the yank command, explained in the next section, Restoring
Copied and Deleted Text.

Deleting Regions: Use I cm | [w] to delete a defined region. If you use I cm | [w) with a
repeat of 2 or more (such as 1 Esc | [JJ), the command deletes the entire tine.
Table 7-7 summarizes the ECL commands to define regions, check their boundaries, and
copy and delete them.

7-10  Fifth  Edition



Command-line Editor

TABLE  7-7
Region Commands

ECL Command Action Command Name

cm @ Defines one end of a region

cm | [xj | cm | [Tl Checks region boundaries

Esc  |  [w]  Copies  a  region  into  a  buffer

cm  |  |~w]  Deletes  a  region

mark

exchange_mark

copy_region

kilI_region

Restoring Copied and Deleted Text
ECL maintains a 10-item buffer containing the most recent

• Word deletions
• Line deletions
• Region deletions
• Copied regions

You can redisplay the most recendy deleted or copied text in this buffer with the ECL yank
command, I cm | [TJ. | cm 1 (TJ inserts the most recent buffer entry to the left of the cursor. If
you press I cm | [TJ several times in succession, the same entry (the last region deleted or
copied) is displayed. Specifying the esc_digit command (1 Esc | n) before | cm | [7] redisplays
the nth most recendy deleted or copied text region.

Note
You cannot restore character deletions performed with the PRIMOS erase character or with
I cm | [T5] because ECL does not store these deletions in a buffer.

I cm | [TJ displays the most recent buffer entry. To replace it with the second most recent and
previous entries, use I Esc | [TJ. Unlike [~cTJ [7], each time you press | Esc | [TJ, ECL changes
the pointer within the buffer to the previous entry and then displays that entry, replacing the
previous entry if you haven't moved the cursor. With 1 Esc | [y] you can view from the second
most recent to the tenth most recent buffer entries. If you continue pressing | Esc | [~y~| after
reaching the last item in the buffer, you review the same entries again in the same order,
because the buffer is circular.

Table 7-8 summarizes the two ECL commands that redisplay deleted or copied text.

The Command History
In addition to a buffer of deleted and copied command line text, ECL also maintains a list of
command lines executed. Every PRIMOS command line that you execute becomes part of
your ECL command history. The command history is a list of a maximum of 200 of the

Fifth  Edition  7-11



~ >

PRIMOS User's Guide

TABLE 7-8
Commands to Redisplay Deleted and Copied Text

~ >

ECL Command Action Command Name

i ctri i m

|Esc|[Yj

Redisplays most recent buffer entry

Redisplays from second to tenth most recent
buffer entry

yank

yank_replace

most recendy executed command lines. You can save and restore command histories. You
can also use them to display

• All command tines in the list
• A specified number of the most recendy executed command lines
• A command tine meeting specified search criteria
• A command line of the indicated tine number
• The previous command line
• The next command line (if you are not positioned at the end of the command history)

Displaying the Command History: To display the current command history, use the
esc_digit repeat and refresh commands. Press | Esc | [JJ [JJ [TJ | cm | [TJ. Specifying a repeat
of 200 ensures that you see a maximum of 200 of the most recendy entered PRIMOS
command lines. If your current history is smaller than that, ECL does not display the unused
entries.
ECL automatically numbers each command tine in the display. A sample command history is
shown below.

001)  DATE
002)  A *>NEW.PRODUCTS;  LD
003)  EMACS  TENNIS.BALL.RETRIEVER

The command history does not contain deletions; ECL maintains a separate buffer for them.
As with the buffer for deletions and copied regions, the command history is circular. ECL
overwrites the oldest (teast recent) commands when you have entered more than 200
commands as part of the same command history. For example, command number 201
becomes command 001, 202 becomes 002, and so on. Your command history contains the
following sequence:

199)
200)
001)
002)

Moving Around in the Command History: Several ECL commands let you redisplay
commands within the command history. I cm | [TJ, described earlier, lets you move back

7-12  Fifth  Edition



Command-line Editor

through the history one command line at a time. Another command, | cm | [TJ, lets you move
forward through the history again. You can also redisplay a specific command line with the
gotojtine command, I Esc | line-number I Esc[ [TJ. For example, pressing

1 Esc | [JJ | Esc | r_~|

redisplays the second command in the history:

002)  A  *>NEW.PRODUCTS;  LD

Note
In die command history examples, the command history line numbers are shown with each
command line. By default, command history line numbers only appear with command lines
when you display the command history with I Escape | n I Ctrl | [l|. However, the section,
Customizing Your ECL Prompts, shows how to make the command history line number appear
as part of your prompt in order to create a display like the one in the examples.

To move from this position to the end of the history, you can use 1 cm | [TJ repeatedly until
you reach it. An easier way to get to the end of the history is to use | ctri | [g] (abort_cmd) or
the goto_line command with a line number of zero (| Esc | |~o] | esc | TJ).
Table 7-9 lists ECL commands for displaying specific command lines from the command
history, as well as commands for displaying the entire list.

TABLE  7-9
Command Line Display Commands

ECL Command Command Line Display Command Name

___]QQJD_I HI
cm 11 l|

"cTjrn

All (entire list)

Previous number of
lines

Current (redisplay)

Esc
Esc

line-number Line number specified_u
cm | |T[

TTJTJ

Next line

Previous line

refresh

refresh

refresh

goto_line

nextjine

prevjine

Staying Positioned Within the Command History: An internal pointer indicates your
position within the command history. By default, after executing a previously entered
command, the pointer is positioned at the end of the command history.

Fifth  Edition  7-13



PRIMOS User's Guide

In the partial command history below, the pointer is at line 27, which is currentiy empty.

023) EMACS RECENT.SIGHTINGS
024)  DATE
025)  EMACS IFO.LOG
026)  SPOOL IFO.LOG

To edit the RECENT. SIGHTINGS file again, issue the previous line command four times
(1 ctri | [TTJ 1 ctri 1 [z] or I Esc I [7] I ctri I [Tj) to redisplay and reexecute tine 23. After finishing
the editing session, the command line below is displayed.

027)  OK,

If you have a series of command lines that you want to reexecute, it is more convenient if the _^
pointer moves with you in the history, instead of going to the end of the list. The ECL
-STICK option lets you do this. Specify the -STICK option at any point in a terminal session
by typing

OK,  ECL  -STICK

Using the above example, if you specify the -STICK option and reexecute tine 23, the next
line displayed is

024)  OK,

The Hidden Command: You must be careful when using the -STICK option because it
does not let you see text on the current command line. For instance in the above example,
line 24 actually contains the PRIMOS DATE command, although ECL does not
automatically display it. A command line containing text that you cannot see is called a
hidden command line. If you enter something else on a hidden command tine, ECL
overwrites the invisible, previously entered text with your new entry.
To prevent inadvertent overwriting of command lines, use the ECL -SHOWJHIDDEN
option with the -STICK option. With the -SHOW_HIDDEN option, ECL displays the next
command line, complete with text. To specify the -SHOWJEIDDEN option, type

OK,  ECL  -SHOW_HIDDEN

Hidden commands occur only when you use the -STICK option; therefore, the
-SHOWJHIDDEN option is useful only if you have also specified the -STICK option.
If the -SHOWJHIDDEN option is invoked in the previous example, line 24 looks like this:

02  4)  OK,  DATE

After executing line 24, the command line below appears.

025)  OK,  EMACS  IFO.LOG

7-14  Fifth  Edition



Command-line Editor

Note that when a hidden command is revealed in this way, the cursor appears at the
beginning of the command line instead of at the end, where it appears for all other
commands. A revealed hidden command stays on the command line only if you issue an ECL
editing command, such as I cm | TJ to delete a character. If instead you begin entering text,
the revealed command automatically disappears to prevent the hidden command from
interfering with the new text.
By specifying both the -SHOWJHIDDEN and -STICK options, you can sequentially
redisplay and reexecute a series of commands. The -NOJSHOWJHIDDEN and
-NO_STICK options reset the default state, so that the pointer automatically moves to the
end of the command history after each command.

Saving the Original Version of Edited Commands: If you edit and reexecute a
previously entered command, the edited version replaces the original version in the command
history. To prevent this, use the ECL -STACK option. Specify the -STACK option at any
point during a terminal session by typing

OK,  ECL  -STACK

If you specify the -STACK option, ECL adds edited command lines to the end of the
command history after you execute them, instead of overwriting the original command lines.
For example, suppose you invoke the -STACK option on tine 27 of the previous example. If
you then return to line 23 and change the filename to OLD.SIGHTENGS, the command
history after your EMACS session looks like this:

023) EMACS RECENT.SIGHTINGS
024)  DATE
025)  EMACS  IFO.LOG
02  6)  SPOOL  IFO.LOG
027)  ECL  -STACK
028)  EMACS  OLD.SIGHTINGS

Saving and Restoring the Command History: If you have a series of commonly used
command lines, you can store them in a command history file. To file a command history,
use the -SAVEJHISTORY option after executing the commands you want to store. The
format is

ECL -SAVEJHISTORY filename

The filename entered contains a maximum of the last 200 command lines executed, as well
as the 10 most recent deletions and copied regions, and the 10 most recently entered search
strings.

Note
Do not enter the ECL -SAVEJ-BSTORY command at the beginning of a login session. The
only commands saved in the file specified are those that you enter prior to the ECL
-SAVE_HISTORY command; commands entered after the ECL -SAVE_HJSTORY command
are not placed in the file.

Fifth  Edition  7-15



PRIMOS User's Guide

Here's an example of how the expand_wild command works. In the command lines below,
the underscore character (_) represents the cursor.

OK,  SLIST  REV_
| Ctrl | QJ

To reactivate a command history file, use the -RESTOREJHISTORY option. The format is

ECL -RESTORE JHISTORY filename

The above command makes the command history stored in filename your current command
history. The commands in the file replace any active command history you may have. If you
restore a command history file as soon as you log in, new command lines are appended to the
restored command history, and become part of your current list.

Note
You cannot display command history files with the PRIMOS SLIST command, nor can you
print them. To restore and reexecute the command lines in files, you must use the ECL
commands and options discussed in this chapter. To create a regular PRIMOS file containing the
command history, create a command output file and specify the ECL -NO_CLEAN_COMO ~»
option. Typing 1 Esc | [TJ [TJ [TJ | Ctrl | [l| displays the command history and writes it to the
command output file.

Expanding Pathnames
ECL can perform automatic pathname completion for files and directories on your system.
When you use the ECL expand_wild command by pressing | cm | [7] or | tab |, ECL tries to
complete what you've typed with a filename or directory name that matches your entry. The
expand_wild command works similarly to the PRIMOS LD command with a partial
pathname, followed by wildcard characters (@@).
When you use the expand_wild command, ECL does one of the following:

• If two or more file system objects match the partial pathname entered, ECL completes
what you've typed with the portion of the pathname that is common to all of them. Press
I cm | QJ again to see the list of all files and directories containing the partial pathname.

• If only one file system object matches the partial pathname entered, ECL replaces the
string entered with the name of that object. If this is a file, ECL redisplays the filename
when you press 1 cm | [JJ a second time. If the matching pathname expands to a
directory name, ECL automatically adds a greater-than sign (>) to the end of it. In this
case when you press I cm | [TJ a second time, ECL tries to expand within this directory,
which usually results in the display of the directory's contents.

• If no file system objects match the partial pathname entered, the terminal bell beeps and
the command line remains the same.

ECL displays possible command-line completions in a numbered menu. In the menu,
directory names end with a greater-than sign (>).

Note
ECL does not support expansion of pathnames with passwords or passworded directories.

7-16  Fifth  Edition



Command-line Editor

The previous command tine changes to

OK,  SLIST  REVIEW._
f~crj [TJ

The following menu is displayed:

1)  REVIEW.1  2)  REVIEW.2  3)  REVIEW.DRAFT  4)  REVIEW.OLD>

OK,  SLIST  REVIEW._

Notice in the above example that ECL completes pathnames that start with the characters
entered (this is the default), and produces a final listing similar to the display shown by

OK,  LD  REV@@

Choosing a Pathname Completion: After you have expanded a pathname, you can
either type the rest of the command line yourself or choose one completion from the menu
with the expand_wild_menu command. You use this command by selecting a number from
the menu and typing

| Esc | n | Esc | | Ctri | [TJ

where n is the number you have selected. ECL then completes the pathname in your
command tine with the completion you have selected.
For example, you can choose the completion REVIEW.DRAFT from the above menu by
typing

| Esc [ [JJ | Esc | | Ctrl | [TJ

ECL then completes the pathname as

OK,  SLIST  REVIEW.DRAFT

Entry number 4 in the display ends with a greater-than character (>) indicating that
REVEEW.OLD is a directory. The > character helps you complete the pathname by adding
further elements, such as filenames. Sometimes, however, you want to use the directory name
itself in a command such as ATTACH. In this case, you must remove the > character, since
PRIMOS does not accept pathnames that end with >. You can prevent ECL from adding the
> character by using the -NOJVVELD JDERECTORY option. Type

OK, ECL -NO_WILD_DIRECTORY

at any point in the terminal session.
The ECL -WELDJEAEL option, in conjunction with the expand_wild command, lets you
complete pathnames that end with a particular character string. Its use is similar to entering
the PRIMOS LD command with wildcards placed before a string of pathname characters
(such as LD @@CPL) or in the middle of a string (such as LD REV@.RUN). To use the

Fifth  Edition  7-17



PRIMOS User's Guide

-WILDJEAEL option, position the cursor exacdy where you want the wildcarding to occur
and then press 1 cm | [JJ. The expand_wild command with the -WILDJEAIL option in force
produces the same display format as shown previously.
The following example illustrates the use of the -WELD JEAEL option.

OK,  LD  <DISK1>USER1>DIRECT0RY1>TXT
fcrnl [JJ

ECL then displays the files within DIRECTORY 1 that end in TXT, shown below.

1)  FILE1.TXT  2)  FILE2.TXT

You can use both the repeat and multiplier commands with either version of the expand_wild
command; doing so skips the intermediate step of partial expansion. The previous example is
altered to demonstrate this.

OK,  REV_

After you press I Esc | [JJ or I cm | [TJ [JJ and then press I cm [ [JJ, you see the following
display:

1) REVIEW. 1

OK, REV_

2)  REVIEW.2  3)  REVIEW.DRAFT  4)  REVIEW.OLD>

Note that the final result is different only in that the PRIMOS command line at the bottom is
the same as the one originally entered, not the partially expanded version produced by
pressing I ctri | [TJ alone (without preceding it with the repeat or multiplier commands).

Referencing Other Directories
You can use the expand_wild command in conjunction with ECL commands to refer to
directories other than the current directory. These referencing commands enable pathname
completion in directories above and including your current directory; these commands do not
change your current attach point.
The format of displays produced by referencing different directories is very similar to those
produced for pathname completion within the current directory. The example below shows
how to refer to a parent directory.

OK,  EMACS  *<P
1 ctri | lu

The following display appears.

1)  PALS 2) PICNIC 3) PLANES>
4)  PLANS.BIG> 5) PLANS.SMALL> 6) POINTS
7)  PROMISES> 8) PROPERTY> 9) PROSPECTS

OK,  EMACS  *<P_
'-18  Fifth  Edition



Command-line Editor

A very similar display appears if you attach to the directory above the current directory and
enter

OK,  LD  P@@

The difference is that with I cm | QJ, you don't have to attach to the directory or enter its
pathname to view its contents. Also, ECL redisplays the original command line at the bottom
of the listing (in this case, EMACS *<P), so that you can complete the rest of the filename
that you want to edit.

In the previous example, ECL listed all file system objects beginning with the letter P that
you could view from the parent directory. However, if you enter

OK,  EMACS  *<PI_
rjcTj UJ

ECL changes the command line to

OK,  EMACS  *<PICNIC_

because the PICNIC file is the only possible expansion for a string of PI. If you enter

OK,  EMACS  *<PE_
[TTJ [JJ

the terminal beeps, because the parent directory does not contain any file system objects that
begin with those letters.
To display the contents of a higher-level directory, enter *< I cm | [TJ for the parent directory
or *« | cm | [TJ for the grandparent directory. You can refer to even higher-level directories
by including additional less-than signs to the right of the asterisk.
Table 7-10 lists the referencing commands.

TABLE  7-10
Reference Commands

Reference  Command  Reference  Position

*<[string]  |  cm  |  [TJ  Parent  directory

*«[string]  I  cm  |  IT]  Grandparent  directory

* >  |  c m  |  Q J  C u r r e n t  d i r e c t o r y

<DISK>directory>[string] \ cm [ [TJ Absolute directory
or
„j>ecfory>[string] | cm | QJ

Fifth  Edition  7-19



PRIMOS User's Guide

If you reference a directory without entering a partial pathname for completion within that
directory, such as a pathname ending with >, this usually results in display of that directory's
contents.

Finding What a Key Does
You can find out what command is bound to any key sequence by typing | ctri | [~|. the ECL
explainjtey command. When you type I ctri | TJ, ECL prompts you for the key combination
you want explained. You then type the key combination, and ECL tells you which ECL
command it is bound to.

Expanding Abbreviations
To expand abbreviations in a command line, move the cursor to the abbreviation you want to
expand and type I Esc [ [TJ. ECL replaces the abbreviation with its expansion. You can use this
to find out exacdy what an abbreviation does. It also makes it easy to use an abbreviation in a
stighdy modified form. lust type the abbreviation in your command tine, expand it with
1 Esc | [a], and modify it.
If your abbreviation contains global variables, they are also expanded to reflect their current
values.

If a command line contains more than one abbreviation, you can have ECL expand them all
by preceding the expand_abbrev command with 1 Esc | QJ. In other words, you type

| Esc | QJ | Escape | [T|

To expand all abbreviations and global variables, type

| Esc | [T] QJ | Escape | QJ

If the command line begins with the PRIMOS syntax suppression character ~, abbreviations
are not expanded.

Note
Some commands, like expand_abbrev, don't repeat when you precede them with | Esc \n.
Instead, the number that you type, called a numeric argument, causes the command to behave
in a different fashion. For example, the numeric argument 4 causes expand_abbrev to expand
all the abbreviations in a command line instead of just expanding the one the cursor is on.

Keyboard Macros
You may find yourself repeating a sequence of ECL commands several times during a
terminal session. You can avoid having to retype the commands each time by creating a
keyboard macro. A keyboard macro is a collection of keystrokes that ECL stores and can
replay on command.

Collecting a Macro: Before you can use a macro, ECL must record it. This is called
collecting a macro. You begin collecting a macro by issuing the ECL coIlect_macro

7-20  Fifth  Edition



Command-line Editor

command, I Esc [ [JJ. After you type I Esc | QJ, ECL records subsequent keystrokes. The macro
can include any set of keystrokes, including ECL commands and text. | Return | ends a macro,
so a macro cannot be longer than a single command line.
While ECL records your keystrokes, it also processes them normally. Any ECL commands
you give are carried out, and any text you type is displayed on the screen.
When you have finished collecting the macro, either type I Return | or issue the ECL
finish_macro command, I Esc | QJ. This tells ECL to stop recording your keystrokes in the
macro.
You can record up to about 200 keystrokes in a macro. You can only have one macro at a
time. If you collect a new macro, it replaces a previous one. However, while you are
collecting a macro, the most recendy defined previous macro is still available. The next
section shows you how you can make use of this feature. You cannot include the
collect_macro command (1 Esc | QJ) in a macro.

Executing a Macro: Once you have collected a macro, you can replay it as often as you
want during the same terminal session using the ECL execute_macro command, I Esc | [¥].
When you press 1 Esc | QJ, ECL reproduces all of the keystrokes contained in the macro, just
as if you were typing them at the keyboard at that point. All the ECL commands included in
the macro are executed, and any text included in the macro is reproduced exacdy as if you
were typing it at the terminal,
You can give a repeat argument to the execute_macro command just as you would to other
ECL commands:

| Esc | n | Esc | [TJ

where n is the number of repetitions. However, only the first ECL command or text character
contained in the macro is repeated.
When you are collecting a new macro, you can include the most recendy defined previous
macro by giving the execute_macro command.
To find out the contents of a macro, use the ECL explainJ^ey command. Type I ctri | [~|.
When ECL prompts you for a key sequence, type I Esc | QJ, and ECL displays the contents of
the current macro.
Table 7-11 lists the macro related commands.

TABLE 7-11
Macro Commands

Command  Command  Name

I Escape [ QJ execute_macro

I Escape | QJ coHect_macro

[ Escape | QJ finish_macro

Fifth  Edition  7-21



PRIMOS User's Guide

A Macro Example: The following example shows how to use a macro to modify and
reexecute a series of previous command lines. (The example assumes that the -STACK
option has not been invoked.) Suppose that during a terminal session you give a series of
PRIMOS COPY commands with relative pathnames (that is pathnames beginning with *>).

025) OK, COPY *>VEGETABLE>TOMATO MENU>FIRST

035) OK, COPY *>FRUIT>APPLE MENU>SECOND
036) OK, COPY *>NUT>CASHEW MENU>THIRD

041) OK, COPY *>HERB>THYME MENU>FOURTH

075)  OK,

Later in the session, you are working in another directory and want to repeat the COPY
commands. You can use a macro to replace the *> with the directory name in each of the
command lines.
First type I Esc | [JJ to begin recording the macro. Then issue the necessary commands to
search for and edit one of the earlier command lines. For example, type | Esc| [TJ, and when
ECL prompts you for the search text, type

R-Search:  COPY  *>

This causes ECL to search for and redisplay line 41:

041) OK, COPY *>HERB>THYME MENU>FOURTH_

Now edit the line by moving the cursor to the beginning of the lined cm | (TJ), then forward
six characters (1 Esc| QJ | cm | QJ), deleting the * (1 cm | [TJ), and typing in the new directory
name, PLANTS. The new version of line 41 now looks tike this:

041) OK, COPY PLANTS>HERB>THYME MENU>FOURTH

Type I Return | to execute the new command line and stop recording the macro.
The entire sequence of key strokes used to edit and execute line 41 is now saved as a macro.
You can use the same sequence to find, edit, and execute all of the previous lines beginning
with the same text (COPY *>).

Type I Esc | QJ to execute the macro. ECL finds, edits, and executes line 36, displaying the
edited version of the line:

036) OK, COPY PLANTS>NUT>CASHEW MENU>THIRD
075)  OK,

7-22  Fifth  Edition



Command-line Editor

r
r

Type I Esc | [e| again, and ECL carries out the same sequence of operations on tine 35, displaying

035) OK, COPY PLANTS>FRUIT>APPLE MENU>SECOND
075)  OK,

You can repeat this operation until you have found, edited, and executed all of the command
lines.

Customizing Your ECL Prompts
By default, ECL displays the PRIMOS prompts that are in effect when you invoke ECL. If
you are using the default PRIMOS prompts, you see the default prompts as you work with
ECL, as well. If you customize your prompts with the PRIMOS RDY command, ECL also
displays the new prompts. If you change your PREMOS prompt by giving the PRIMOS RDY
command while you are using ECL, ECL displays the new prompt.
ECL can also display its own prompts. Set the ECL ready, error, and warning prompts with
the ECL -READYJ3REEF, -ERRORJ3REEF, and -WARNENGJ3REEF options. You can
also include ECL line numbers in your prompt by including a pound sign (#) in the prompt
text. As when you customize PRIMOS prompts, put the entire string in single quotation
marks. For example,

OK,  ECL  -READY_BRIEF  '#)  YOU  RANG?  '

sets your ECL ready prompt to

001)  YOU  RANG?

ECL prompts that you set supersede any prompts you set with the PRIMOS RDY command.
Once you have specified ECL prompts, they remain in effect until you invoke the ECL
-ENETIALIZE option or quit ECL.

WARNING
The -INITIALIZE option resets all ECL options to their default values and clears the command
history, search, copy, and delete buffers.

The Password Command
Sometimes you type command lines that contain passwords or other sensitive material that
you may not want echoed to the screen or saved in the command history. Use the ECL
password command in these circumstances: I Esc | [~p] . You must give the password command
at the beginning of the command line, before you type anything else. Whatever you type on
the current command tine is then sent to the PRIMOS command processor without being
echoed to the screen or saved in the command history.
The ECL editing commands are disabled while you type the invisible command tine. You can
use only the PRIMOS erase and kill characters to edit the line.

Fifth  Edition  7-23



PRIMOS User's Guide

Extended Commands
You normally invoke each of the ECL commands introduced in this chapter by typing a key
sequence made up of the I Esc|, | cm |, and other keys in various combinations. For example,
to move the cursor forward one character, you type I ctri | QJ. The key sequence you type to
execute a command is said to be bound to that command.

Each of the commands introduced here also has a command name. For example, the
command to move forward one character is called forward_char. The key sequence
I ctri | QJ is thus bound to the command forward_char. You can also execute an ECL
command by using its command name instead of the key sequence bound to it. You do this
with the ECL extend_command, | Esc] QJ.

When you type I Esc | [Tj, ECL prompts you for the name of the command you want to
execute. When you type the command name, ECL executes the command just as if you had
given the key sequence bound to that command.

Using ECL Across a Network
If you use ECL on a remote system, specify the -MODE REMOTE_ECHO option when you
establish the connection via NETLINK. This speeds up the terminal display. You must open
any command output (COMO) files after you are on the remote system for the ECL
-CLEAN_COMO option (the default) to work. If you open a COMO file on the local system
and then attach to a remote system, the file contains all ECL dialog.

ECL Command Summary
Table 7-12 includes all of the ECL commands discussed in this chapter, grouped according to
function. For further information about ECL, and a complete listing of ECL commands, see
the PRIMOS Commands Reference Guide.

An asterisk (*) indicates functions that accept the repeat (| Esc \n) and multiplier (| cm | [Up
commands.

7-24  Fifth  Edition



7~A5_£ 7-72
ECL Commands by Function

Command-line Editor

Command Sequence Command Name
(precede with
| Esc QJ)

Action

Case and Character Position Commands

togg!e_case

downcase_word

twiddle

upcase_word

Changes lowercase character to
uppercase and vice versa*

Changes word to all lowercase*

Transposes two characters to left of
cursor

Changes word to all uppercase*

cm | |__J

Esc QJ

cm | LTJ

Esc rj/j

Command Line Display Commanis

gotojine

refresh

nextjine

prev_line

Displays command history

Displays line number specified

Redisplays current line

Redisplays previous n lines
1 Ctrl 1 QJ

Explicitly displays hidden command

Displays next line*

Displays previous line*

Escape | | 2 | | 0 | | 0 |
Ctri | | L |

Escape line-n umber
Esc | | G [

cw i rn
Esc n

Esc | | 0 | | Ctrl | | N |

cm | | N|

ctri  im

Copied and Deleted Text Redispla

Ctrl |QJ

y Commands

yank

yank_replace

Redisplays most recent buffer entry*

Redisplays from the second to the
tenth most recent buffer entries*

Escape | | Y |

r
Fifth  Edition  7-25



" >

PRIMOS User's Guide

TABLE 7-12-Continued
ECL Commands by Function

Command Sequence Command Name
(precede with
Esc | [x]j

Action

Cursor-momng Commands

beginjine

back_char

back_word

endjine

forward_char

forward_word

Moves to beginning of tine

Moves back one character*

Moves back one word*

Moves to end of line

Moves forward one character*

Moves forward one word*

| cm 11 a|

I cm 11 b|

| Escape | | B |

I cm | | E|

I Ctrl I I F I

i esc i m

Delete Cominands

delete_char

delete_word

rubout_char

rubout_word

kill_line

kill_region

Deletes next character*

Deletes next word*

Deletes previous character*

Deletes previous word*

Deletes rest of line (from cursor to
end)

Deletes entire line

Deletes region specified with mark
command*

I Ctrl | | D |

| Esc | [TJ

I Ctrl 11 H |
or
| Backspace[

| Esc | | Ctrl
or
| Esc | | Backs;iace|

I Ctrl | | K |

~ >
I Ctrl | | U | | Ctri | | W |

I  Ctrl  |  |W|

Macro Commands

| Esc | LfJ

|esc|QJ

|esc|[JJ

execute_macro

collect_macro

finish_macro

Executes most recendy collected
macro

Starts recording command macro

Stops recording command macro

7-26  Fifth  Edition



Command-line Editor

TABLE 7-12 - Continued
ECL Commands by Function

Command Sequence Command Name
(precede with
QTJQJ)

Action

Miscellaneous Commands

cm  g

JTJQJ
Esc | [TJ

Esc | QJ

abort_cmd

password

extend_command

expand_abbrev

Aborts the most recent ECL
command

Prevents screen echo of line

Executes named command

Expands abbreviations in command
line

Pathname Expansion Commands

rrnm
Esc
Esc

entry-numberrciTjm

expand_wild

expand_wild_menu

*<[string] I cm | QJ

*«[string]  |  cm |  QJ

<DISK>directory> [string]
| cm | QJ
or directory>[string] I cm | QJ

Completes rest of common pathname

Picks entry from wild display menu

Refers to parent directory

Refers to grandparent directory

Refers to absolute directory

Region Commands

| cm | [xj | cm | [TJ

| Esc | [W]

I cm | [TJ

exchange_mark

copy_region

mark

Checks region boundaries

Copies region into a buffer

Defines one end of a region

r
Fifth  Edition  7-27



PRIMOS User's Guide

TABLE 7-12 - Continued
ECL Commands by Function

Command Sequence Command Name
(precede withI Esc I QlD

Action

Repeat and Multiplier Commands

reexecute

esc_digit
multiplier

multiplier

I  Ctrl  |[CJ

I Esc | n
or
| cm ||Jj]n

Repeats previous ECL command*

Repeats next ECL command n times

I cm |LyJ Repeats next ECL command four
times

I Esc | « | Ctrl | | U | Repeats next ECL command a multi
ple n of four times

| cm | | U | | Ctrl 11 u | Repeats next ECL command 16
times

Search Commands

| Esc | [TJ

|Esc|LsJ

reverse_search

forward_search

Searches backward*

Searches forward*

ECL Command Options
This section lists the most common options that you can issue with the PRIMOS ECL
command. The list is arranged alphabetically. Default options and their counterparts are
paired, with the default appearing first. When an option has no default, you must explicitly
give the option with the ECL command if you want the option to take effect. Valid
abbreviations are shown in red. For a complete list of ECL options, see the PRIMOS
Commands Reference Guide.

Option
-CLEAN_COMO
-NO_CLEAN_COMO

7-28  Fifth  Edition

Meaning
Controls whether ECL terminal output appears in a
command output file that you open with the PRIMOS
COMO command. With the default, -CLEAN_COMO, only
the ECL prompt and the final version of each command line
(when you press | Return |) appears in the command output
file. -NO_CLEAN_COMO causes all screen output to be
included in the file. If you work across a network and use a
command output file, you must open the file on the remote
system for the -CLEAN_COMO option to work properly.



-COMPONENT
-ENTRY

-ERROR_BRIEF prompt

-HELP
-INITIALIZE

-NO_CASE_SEARCH
-CASE SEARCH

-NO_EDIT_COMI
-EDIT_COMI

-NO_SHOWJIIDDEN
-SHOW HIDDEN

-NO_STACK
-STACK

-NO_STICK
-STICK

-NOJ^ILDJTAIL
-WILD  TAIL

Command-line Editor

Defines characters that ECL considers valid for words. The
default, -COMPONENT, indicates that words can consist
only of alphanumeric and underscore characters. -ENTRY
adds  the  characters  #$&*/-.@ +  A =  (those  valid  for
PRIMOS  file  system  objects).  The  definition  of  word
affects ECL commands such as ["EscJ [TJ (forward_word),
I Esc 1 QJ (back_word), and | Esc | | p j (delete_word).
Sets the error prompt displayed within ECL to prompt. The
section, Customizing Your ECL Prompts, shows an example
of how to reset your prompts.

Displays the valid ECL options.
Reinitializes ECL to its default options and clears the com
mand history as well as the search, copy, and delete buffers.
Controls whether searches for strings entered are case-
sensitive. With the default -NO_CASE_SEARCH, searches
are not case-sensitive. -CASE_SEARCH makes searches
case-sensitive.
Controls whether ECL processes the contents of command
input  files.  With  the  default  -NO_EDIT_COMI,  the
contents of command input files are passed directly to
PRIMOS for execution without processing by ECL. Com
mand lines are not  included in the command history.
-EDIT_COMI causes ECL to treat input from command
input files exactly like terminal input and to include com
mands in the command history.
Controls whether or not ECL displays hidden commands.
With the default -NO_SHOW_HIDDEN, hidden commands
are not displayed. -SHOW_HIDDEN causes ECL to display
hidden commands.
Controls whether ECL considers the command history to be
a ring (-NO_STACK) or a stack (-STACK). With a ring,
modifications to command lines already executed replace
the original commands in the command history. With a
stack, each modification becomes a new command in the
command history. Stacks minimize lost commands, but
make executing a sequence of previous commands more
difficult
With the default -NO_STICK, the command history pointer
is positioned at the end of the command history after you
redisplay and execute a previous command. The -STICK
option causes ECL to position the command history pointer
at the command immediately after any redisplayed com
mand that you execute. With -STICK, you can execute a
sequence of previous commands. Refer to the section,
Changing the Command History Pointer, for more informa
tion.
Controls whether automatic pathname completion performs
as  if  wildcards  are  appended  at  the  end  of  a  string
-NO_WILD_TAIL, the default; or inserted at the cursor
position  (-WILDJTAIL).

Fifth  Edition  7-29



PRIMOS User's Guide

-OBEY_ERKL
-NO  OBEY  ERKL

-OFF

-ON
-READY_BRIEF prompt

-RESTORE JIISTORY filename

-ROW_MAJOR
-COL_MAJOR

-SAVEJHISTORY filename

-WALLPAPER  [filename]

-WARNING_BRIEF  prompt

-NO_WILD_ABBREV
-WILD  ABBREV

-WILD_DIRECTORY
-NO WILD  DIRECTORY

-WILD_MENU
-NO  WILD  MENU

Controls whether or not ECL observes the characters defined
as your PRIMOS erase and kill characters (using the PRIMOS
TERM command). With the default -OBEY_ERKL, ECL
uses whatever erase and kill characters are defined to
PRIMOS. -NO_OBEY_ERKL allows these characters to per
form other functions in ECL.
Turns off the ECL environment and reverts to PRIMOS
command line processing. ECL continues to store all option
settings while you are logged in. If you give the ECL -ON
command during the same terminal session, the stored
options remain in effect.
Invokes die ECL editor.
Sets the ready prompt within ECL to prompt. Refer to the
section, Customizing Your ECL Prompts, for an example of
how to do this.
Makes the command history contained in filename the cur
rent command history. Refer to the section, Saving and
Restoring the Command History, for more information.
Indicates whether the expand_wild command sorts alpha
betical lists horizontally (-ROWJvIAJOR, the default) or
vertically (-COLJvIAJOR).
Stores the current command history in filename. Refer to
die section, Saving and Restoring the Command History, for
more information.

Displays a list showing which commands are bound to
which key combinations. If you include filename, the list is
written to the specified file. You can spool the file to get a
hardcopy listing of keybindings.
Sets the warning prompt within ECL to prompt. The section,
Customizing Your Prompts, includes an example of how to
reset your prompts.
Controls whether ECL expands abbreviations when complet
ing a pathname. With the default -NOJVTLD_ABBREV,
ECL does not expand abbreviations when you complete a
pathname with the expand_wild command fl cm ] QJ).
-WILD_ABBREV causes ECL to expand abbreviations and
global variables when completing a pathname.
Controls whether ECL appends the > character to any entry
that is a directory name when a pathname is expanded. With
the default -WILD JDIRECTORY, > is appended whenever
ECL expands an incomplete pathname into a directory
name.  -NO_WILD_DIRECTORY  prevents  ECL  from
adding the > character.

menu  generated  by  the
1  D3).  With  the  default

Controls  numbering  of  the
expand_wikl command ([ cm
-WILD_MENU, the selections are numbered for easy selec
tion with the expand_wild_menu command (I Esc | n I Esc 1
rctrTJ QJ). -NO_WILD_MENU prevents ECL from num

bering the selections.

- "

7-30  Fifth  Edition



Customizing  Your  Environment

This chapter introduces a variety of techniques for customizing your working environment. It
shows how you can

• Change the form of the prompts displayed at your terminal
• Define short abbreviations for PREMOS command lines and arguments
• Define global variables to stand for strings that you can use both at command level and

in programs
• Create a special login file of PREMOS commands that are automatically carried out

every time you log in
• Send messages and set your terminal's ability to receive messages

The chapter also briefly introduces commands to set maximum limits, or quotas, on the
amount of storage space allotted to directories on a disk.

Changing the Prompt Message
You can vary the PRIMOS prompts in two ways using the RDY command:

• You can tell PREMOS to supply a long prompt that includes the time and a variety of
other information.

• You can supply your own prompt message text.

Long Prompts
The display format for long prompts is
roK  |

-<  ER  >  time  CPU-time  I/O  [command  level]
I text J

r
Fifth  Edition  8-1



PRIMOS User's Guide

The prompt displays OK (for ready), ER (for error), or a user-defined text, followed by the
time (hh:mm:ss, 24-hour clock), and the amount of CPU and I/O time used (in seconds) since
the last prompt. The following examples show long ready, and long error prompt displays:

OK  16:23:25  0.024  0.021
ER  10:07:31  0.100  0.609

The long prompt also displays your command level if it is greater than 1. Command levels
are explained in Chapter 12. To have PRIMOS display long prompts, use the -LONG option
of the RDY command, as shown in the section, The RDY Command.

The Message Text
The OK, and ER! prompt messages are default values for both the short prompt and the
message part of the long prompt. You can use the RDY command to change the text of the
prompt message to any string with a maximum of 80 characters. This is especially useful if
you work on several systems, since you can set a different prompt for each system. You can
change the text both for the brief and the long forms of the prompts.

The RDY Command
The format for the RDY command is

RDY [options]

The options are summarized in Table 8-1.

If given without options, the RDY command displays a single long-form prompt.

If you use one of the options that creates your own prompt message, the text can have a
maximum length of 80 characters. If the text contains any special characters or imbedded
blanks, you must enclose it within single quotation marks.
You can use more than one option with the same RDY command.

The following example illustrates the use of RDY options:

OK, RDY -LONG
13:11:41  0.827  1.739
RDY -OFF
RDY -ON
13:11:56  0.066  0.000
RDY  -RL  "Absolutely  right!'
Absolutely  r ight!  13:12:01  0.054  0.000
RDY  -ERIEF  -RB  'GO!'
GO!

8-2  Fifth  Edition



Customizing Your Environment

TABLE  8-1
Options  for  the  RDY  Command

Option Function

-LONG

-BRIEF

-OFF

-ON

-READY_LONG text

-READY_BRIEF text

-ERROR_LONG text

-ERROR_BRIEF text

-WARNING_LONG text

-WARNING BRIEF text

Sets the terminal to the long form of prompt.

Sets the terminal to the brief form of prompt.

Suppresses prompts entirely.

Reactivates most recently set prompts after they have been
turned off with the -OFF option.

Changes the long ready message to text. OK, is the default mes
sage at login time. The time and usage data that appears in the
long prompt is not affected by changes to the message text.

Changes the brief ready message to text. OK, is the default mes
sage at login time.

Changes the long error message to text. ER! is the default text at
login time.

Changes the brief error message to text. ER! is the default mes
sage at login time.

Changes the long warning message to text. OK, is the default
text at login time.

Changes the brief warning message to text. OK, is the default
message at login time.

Warning Prompts
The default OK, prompt is actually two prompts in one. Normally, the OK, prompt indicates
that PREMOS has carried out a command successfully and is waiting for further input. This is
called the ready prompt. When PRIMOS cannot carry out a command or a program does not
run to completion, you see the error prompt (the default is ER!). But there are times when
programs run to completion but issue warning messages, because they have encountered
unexpected conditions. In these situations, PREMOS issues a warning prompt. By default,
PRIMOS does not distinguish between ready and warning messages; it uses the OK, prompt
for both. You can use the RDY command to have PRIMOS distinguish between the two in
one of three ways:

•  Change your ready prompt (using the -READYJ^ONG and/or  -READYJ3RIEF
options), but not your warning prompt; the ready prompt is changed to your new text,
and the warning prompt is the default OK,.

•  Change  only  the  warning  prompt  (using  the  -WARNENG_LONG  and/or
-WARNENGJ3REEF options).

• Change both ready and warning prompts to different messages.

Fifth  Edition  8-3



PRIMOS User's Guide

Notes

Any changes you make using the RDY command are in effect only during the current work
session. If you log out and log in again, you see the default prompts. If you want the changes to
be in effect everytime you log in, incorporate a RDY command in your login command file,
discussed later in this chapter.
By default, ECL uses whatever prompts are in effect when you invoke ECL. If you set new
prompts using the PRIMOS RDY command, ECL displays them. You can also set your own
ECL prompts. See the section, Customizing Your ECL Prompts, in Chapter 7.

Creating and Using Abbreviations
You can use the ABBREV command to create abbreviations for frequentiy used command
lines and arguments. For example, if you create the abbreviation NEWBOOK to stand for the
pathname  BOOKS>nCTION>MYSTERY>MANUSCRIPTS>EDITED>AUGUST,  then
you can attach to this directory with the short command

OK, ATTACH NEWBOOK

The ABBREV Command
You use the ABBREV command to create abbreviations and make them available to
PRIMOS. There are three steps to this procedure, each of which is carried out with one of the
ABBREV command options:

1. Create an empty abbreviation file.
2. Define abbreviations within the file.
3. Activate the file during any work session in which you want to use the abbreviations.

The general format of the ABBREV command is

ABBREV flPatnmme] loptions]\
\  o p t i o n s  J

The ABBREV command takes several options. The ones you need to get started are
discussed in this section. For a complete list of options and their uses, see the PRIMOS
Commands Reference Guide.

Creating an Abbreviation File
To create and activate a new abbreviation file, use the ABBREV command with the
-CREATE option:

ABBREV pathname -CREATE

where pathname names the file to be created. If the file is in the current directory, you can
use a filename alone.

8-4  Fifth  Edition



Customizing Your Environment

For example, assume that you are attached to a directory named MYDER. The following
command creates and activates an abbreviation file named MY.ABBREV in MYDER:

OK,  ABBREV  MY.ABBREV  -CREATE

Note
The ABBREV command with die -CREATE option activates the abbreviation file it creates. If
another abbreviation file is currendy active when you issue this command, it becomes inactive.
While the new file is active, the only abbreviations available to you are the ones it contains.
Reactivating an existing abbreviation file is discussed below.

Defining  Abbreviations
You may define abbreviations and put them into an abbreviation file by using the
-ADD_COMMAND, -ADD_ARGUMENT, and -ADD options of the ABBREV command.
The format is

r-ADD_  ARGUMENT  "|
ABBREV [pathname] -i -ADD_COMMAND name value V

L - A D D  J
A r g u m e n t  M e a n i n g
pathname The abbreviation  file  to  which  the  abbreviation  is  added.  This  file  also

becomes the active abbreviation file. If pathname is omitted, the abbreviation
is added to the abbreviation file currendy active for your user ID.

Note
With all options of the ABBREV command, if you give a pathname or
filename argument, the file specified is activated. If you give the
ABBREV command without a pathname or filename, the currently
active file is affected.

name The abbreviation name. Abbreviation names can have as many as eight char
acters, but cannot include spaces, single quotation marks ('), commas, right
angle-brackets (>), or vertical bars (I).

value The string that the abbreviation name stands for. This can be any character
string, including commands, arguments, and options, that can appear in a
PRIMOS command line. The use of variables in abbreviations is discussed
below.

Which option you use depends on how you want to use the abbreviation.

The -ADDJ30MMAND Option: The -ADD_COMMAND option adds an abbreviation
that is expanded to its full form only when it occurs in the command position of a command
line. The first element of a command line after the prompt occupies the command position.
For example,

OK, ABBREV -ADD_COMMAND TRM TERM -DISPLAY

Fifth  Edition  8-5



PRIMOS User's Guide

adds the abbreviation TRM to the currendy active abbreviation file, and defines it as standing
for the command line

TERM  -DISPLAY

Whenever this abbreviation file is active, you can get information on the current TERM
settings by typing

OK,  TRM

The -ADD_ARGUMENT Option: The -ADD_ARGUMENT option adds an abbreviation
that is expanded to its full form only when it occurs in an argument position in a command
line. An element is in an argument position when it occurs after the command position. For
example,

OK, ABBREV -ADD_ARGUMENT MYBOOK BOOKS>FICTION>MSS>MINE

adds the abbreviation MYBOOK to the currently active abbreviation file. If you use
MYBOOK as a command tine argument while the abbreviation file is active, it is expanded
to BOOKS>FECTION>MSS>MINE. For example,

OK, DELETE MYBOOK

is equivalent to

OK, DELETE BOOKS>FICTION>MSS>MINE

The -ADD Option: The -ADD option adds an abbreviation that is expanded to its full
form when it occurs anywhere on the command tine.

Although the -ADD option creates an abbreviation that expands as either a command or as an
argument, the more specific options -ADD_COMMAND and -ADD_ARGUMENT are
usually preferred, because they avoid errors that can occur if, for example, you mistakenly
place a command abbreviation in an argument position.

Abbreviations for Multiple Commands
You can define an abbreviation that stands for a series of commands by separating the
commands with semicolons (;), just as you specify a series of commands in a PRIMOS
command tine interactively. For example,

OK, ABBREV -ADD_COMMAND AL ATTACH BOOKS>MSS; LD

defines an abbreviation AL that attaches you to the directory BOOKS>MSS and lists the
directory's contents.

8-6  Fifth  Edition



Customizing Your Environment

Note
Because the ABBREV command interprets a semicolon as the beginning of another command
line to be included in the abbreviation, you cannot give two ABBREV commands on the same
command line. That is, the command

OK,  ABBREV -AC AL ATTACH MYDIR;  LD;  ABBREV -DELETE HOME

does not first create an abbreviation called AL and then delete one called HOME. Instead, it
creates an abbreviation called AL that stands for the following command line:

ATTACH MYDIR; LD; ABBREV -DELETE HOME

Every time you execute this abbreviation, it attempts to delete an abbreviation called HOME
from the active abbreviation file.

Using Variables in Abbreviations
You can include variables in your abbreviations. This often makes abbreviations more
generally useful. For example, suppose you want to be able to attach to any directory and list
its contents using a single command. You can do this by rewriting the AL abbreviation above
using a variable in place of the pathname BOOKS>MSS. The following command
accomplishes this:

OK, ABBREV -ADD_COMMAND AL ATTACH 11%; LD

The variable in this case is designated by %1%. Now, when you type a command line
beginning with the abbreviation AL, whatever you type after the abbreviation is substituted
for the variable %1% when the abbreviation is expanded. For example, when you type the
command tine

OK, AL ACCOUNTS>PAYABLE

the abbreviation processor substitutes the pathname ACCOUNTS>PAYABLE for the
variable %1%. Your command line is, therefore, equivalent to

ATTACH  ACCOUNTS>PAYABLE;  LD

In effect you have created a new PRIMOS command with the format

AL pathname

that attaches you to any directory you specify and lists its contents.

Multiple Variables: You can define a maximum of nine variables in a single abbreviation,
using the format %number% for each variable, number indicates which string from the
command line is to be substituted for each variable. The symbol %1% tells the abbreviation
processor to substitute the first string typed after the abbreviation; %2% stands for the second
string; and so on. For example, suppose you define an abbreviation with the command

OK, ABBREV -ADD_COMMAND CLD COPY %1% %2%; LD %2%

Fifth  Edition  8-7



PRIMOS User's Guide

Now, if you give the command line

OK, CLD PAYMENTS ACCOUNTS>AUGUST

the abbreviation processor substitutes the string PAYMENTS for the variable %1% and
ACCOUNTS>AUGUST for both occurrences of the variable %2%. Your command line is
therefore equivalent to

COPY PAYMENTS ACCOUNTS>AUGUST; LD ACCOUNTS>AUGUST

When it processes your command, PRIMOS copies a file called PAYMENTS from the
current directory to the directory ACCOUNTS, names the new file AUGUST, and then
shows you the directory listing of the new file. In effect, you have created a command to
copy a file and list the new copy. Your command has the format

CLD  old_pathname  new_pathname

Activating an Abbreviation File
In order to use the abbreviations in an abbreviation file, the file must be active. When you
create a new abbreviation file it automatically becomes the active file. If you add an
abbreviation to an existing abbreviation file that is not currendy active, the file also becomes
active. If you want to activate an existing abbreviation file without adding any abbreviations,
use the ABBREV command in one of the following formats:

ABBREV pathname [-ON]

or

ABBREV-ON

• You can always activate an abbreviation file using the first format, pathname specifies
the abbreviation file to be activated. You can use a filename alone if the file is in the
current directory. The -ON option may be omitted.

• You can use the second form if an abbreviation file has previously been activated
during the current work session but no abbreviation file is currently active. This
reactivates the most recently active abbreviation file.

Once your abbreviation file has been activated, it remains active until you either activate a
different abbreviation file, log out, or deactivate it.

You can deactivate the currendy active abbreviation file with the -OFF option:

ABBREV-OFF

Deleting Abbreviations
Use the -DELETE option of the ABBREV command to delete abbreviations. The format is

ABBREV [pathname] -DELETE name-1 [...name-n]

8-8  Fifth  Edition



Customizing Your Environment

A r g u m e n t  M e a n i n g
pathname  Specifies  the  file  from  which  the  abbreviations  are  to  be  deleted.  If

the file is in the current directory, you can give the filename alone. If
the file is not currently active, it is activated. If you don't specify a
pathname, the abbreviations are deleted from the currendy active file.

name-1 [...name-n] Specify the names of the abbreviations you want to delete. You can
use wildcards to select several similar abbreviations.

Listing  Abbreviations
Use the -LIST option to display the contents of an abbreviation file. The format is

ABBREV [pathname] -LIST [name-1 [...name-n]]

A r g u m e n t  M e a n i n g
pathname  Specifies  the  abbreviation  file  to  be  listed.  If  the  file  specified  is  not

currendy active, it is activated. If pathname is omitted, the -LIST
option lists the currendy active abbreviation file.

[name-1 [...name-n]] Optionally specify die names of abbreviations you want listed. You
can use wildcards. If you omit the list of names, the entire file is listed.

In the listing, abbreviations added with -ADD_COMMAND are preceded in the listing by
(C), those added with-ADD_ARGUMENT by (A).

WARNING
Do not try to list an abbreviation file with SLIST, or edit one with a text editor like ED or
EMACS. Abbreviation files are not text files. Trying to list one with SLIST can produce
unexpected results at your terminal. Editing an abbreviation file with a text editor can damage
the file and make it unusable.

Using Abbreviations
You can use the abbreviations from an active abbreviation file in any command given to
PREMOS interactively. You just substitute the abbreviation name for the command line text it
stands for. When an abbreviation file has been activated, the PRIMOS abbreviation processor
scans each command line you type at the terminal, checking each word against the active
abbreviation file. If it encounters any abbreviations, they are expanded to their full form
before the command is passed to the command processor.

Note
You can see the expanded version of any abbreviation you include in a PRIMOS command line
by giving the command

OK,  ABBREV  -VERIFY

This causes PRIMOS to redisplay all command lines, with any abbreviations expanded, before
they are executed.

Fifth  Edition  8-9



PRIMOS User's Guide

You can also use abbreviations in CPL programs (CPL is introduced in Chapter 15). You
cannot use abbreviations in COMINPUT files. (COMENPUT files are introduced in Chapter
14.)

Note
If you include global variables or functions in an abbreviation definition, you may need to use
the PRIMOS syntax supression character, the tilde (~). This keeps PRIMOS from evaluating the
variables or functions when the abbreviation is defined. The next section explains global
variables. It includes an example of an abbreviation that uses a global variable, and it shows you
how to use syntax suppression. Functions are discussed in the PRIMOS Commands Reference
Guide.

Global Variables
PRIMOS provides several ways to use variables that stand for strings, such as pathnames and
command arguments. The variables that are introduced with the ABBREV command take
their values directly from a command tine that you type at the terminal. You can also define
variables that take their values from a file. Such variables are called global variables, and the
file in which their values are defined is called a global variable file. They are said to be
global because, once they have been defined, they are widely accessible. Global variables are
available

• Interactively, at PRIMOS command level
• To abbreviations
• To CPL programs (see Chapter 15)
• To COMENPUT files (see Chapter 14)
• To programs written in some high-level languages

The process of defining and using global variables is similar to the process of defining and
using abbreviations.

1. You create and activate a global variable file.
2. You define variables in the active file.
3. You use variables defined in the active global variable file to stand for argument

strings in PRIMOS commands and programs.

Once a global variable has been defined, it is available whenever the file that defines it is
active.

Global Variable Related Commands
The PRIMOS commands to create and activate global variable files and define global
variables are described briefly below. For complete details, see the CPL User's Guide or the
PRIMOS Commands Reference Guide.

8-10  Fifth  Edition



Command
DEFINE_GVAR pathname [-CREATE]

SET.VAR name [:=] value

LIST_VAR [var_name...]

DELETE VAR var name.

Customizing Your Environment

Function
Activates the global variable file pathname. With the
-CREATE option, creates an empty global variable
file and activates it.
Defines a new variable and places it in the active
global variable file, or changes the value of an exist
ing variable, name may contain a maximum of 32
characters. Names of global variables must begin with
a dot (.), as in .ALPHA, value is an alphanumeric
character string. The assignment symbol (:=) is
optional.
Lists the variables and values contained in an active
global variable file. You can specify var_name... to
select specific variables for listing. You can use
wildcards to specify several similar variables.
Deletes variable(s) from an active global variable file.
You can use wildcards to select several similar
variables.

Caution
Do not use a dollar sign ($) as the last character in global variable names that you define; this
character is reserved for global variables defined by Prime.

The following example illustrates the use of these commands. Suppose that you want to
create and activate a global variable file called VARFILE.GVAR. Use the DEFINE_GVAR
command:

OK,  DEFINE_GVAR VARFILE.GVAR -CREATE

Now suppose that you want to define variables to stand for the pathnames of two directories
that you often use. Do this with the SETJvAR command:

OK, SET_VAR .REPORT ACCTS>PAYMENTS>FY87
OK, SET_VAR .MEMO MYDIR>PAPERWORK>MEMOS

You can check that the variables have been properly defined with the LISTJVAR command:

OK,  LIST_VAR
.REPORT
.MEMO

ACCTS>PAYMENTS>FY87
MYDIR>PAPERWORK>MEMOS

r

Using Global Variables
Global Variables in Interactive Commands: You can use global variables interactively
by including them in a command line. You specify a global variable in a command line as
%name%, where name is a variable defined in the currently active global variable file. You

Fifth  Edition  8-11



PRIMOS User's Guide

normally use variables to stand for arguments such as long pathnames, although a global
variable can stand for a whole command line, much like an abbreviation.
For example, if VARFILE.GVAR is currently activated, you can attach to the directory
ACCTS>PAYMENTS>FY87 by giving the following command at the terminal:

OK, ATTACH %.REPORT%

Global Variables in Abbreviations: You can include global variables in an abbreviation
definition in much the same way that you include variables that take their values from the
command line. You use the same format as you do when specifying a global variable
interactively: %name%.
If you use a global variable in an abbreviation, you must be sure that PRIMOS interprets it as
you intend. Suppose you have defined the global variable .BOOK to stand for the pathname
MSS>EDITENG>NEW in the currendy active global variable file. If you now define an
abbreviation with the following command,

OK, ABBREV ADD_COMMAND BOOK ATTACH %.BOOK% ;LD

and then check your abbreviation file with ABBREV -LIST you find the following
definition:

BOOK  ATTACH  MSS>EDITING>NEW;  LD

This is probably not what you intended. PRIMOS evaluated the global variable .BOOK when
it  executed  the  ABBREV  command,  replacing  it  with  its  current  value
(MSS>EDITING>NEW) in the abbreviation definition. This means that if you later change
the value of .BOOK in your global variable file, the BOOK abbreviation still attaches you to
the old directory.

Usually, what you want is to include the variable itself in the abbreviation definition. You do
this with the tilde (~), the PRIMOS syntax suppression character introduced in Chapter 6.
When you put a tilde at the beginning of the ABBREV command tine, PRIMOS does not
evaluate global variables when it defines the abbreviation. For example, if you give the
command line

OK, -ABBREV ADD_COMMAND BOOK ATTACH %.BOOK%;LD

then the book abbreviation is listed as

BOOK  ATTACH  %.BOOK%;  LD

Now the variable .BOOK is evaluated each time the BOOK abbreviation is expanded. In
other words, when you type BOOK in a command line, PRIMOS attaches you to whatever
directory is currendy defined as .BOOK in your global variable file. This means that when
you change the value of .BOOK in the currendy active global variable file, the BOOK
abbreviation attaches you to the new directory.

8-12  Fifth  Edition



Customizing Your Environment

Global Variables in Programs: CPL programs define global variables with the
&SETJVAR directive or with the SETJVAR command (but not with the &ARGS directive).
Variables are referred to in the same form as above: %name%. Programs written in high-
level languages define global variables through the GVSSET routine, and refer to them
through the GV$GET routine. The CPL User's Guide and the Prime language reference
guides contain details.

Global Variables in the Batch and Phantom Environments: If you use global
variables in a command file or program that runs as a Batch job or phantom, you must
activate the appropriate global variable files within the command file or program. The Batch
and phantom environments are described in Chapter 16.

Creating Login Files
PRIMOS can do much of the work of customizing your environment automatically, every
time you log in. For example, you may want to establish certain terminal characteristics
(using TERM), set prompts (with RDY), and activate abbreviation and global variable files
(using ABBREV and DEFENE_GVAR) each time you log in. If your system has electronic
mail or a bulletin board system, you might also want to give the commands to check your
mail and read any messages. You can do all of these things using a login file.
A login file is a program or command file that PREMOS automatically executes each time
you log in. The file is usually written in PRIMOS Command Procedure Language (CPL).
CPL is introduced in Chapter 15, but a simple CPL program can be just a series of PRIMOS
commands stored in a file with the filename suffix .CPL. You can write a simple login CPL
file in two steps:

1. Use ED or EMACS to create a file containing the PRIMOS commands you want
executed each time you log in. Enter one command per line in your file.

2. Save this file in your origin directory with the filename LOGEN.CPL.

You can also write a login file in any programming language supported by PRIMOS or you
can use a command input file. These options are described briefly below. Every time you log
in, PRIMOS looks for a login file in your origin directory. If such a file is found, PRIMOS
executes it automatically before beginning its interactive dialog with you.

A Sample LOGIN.CPL
The following example shows a LOGIN.CPL file created with ED:

TERM  -ERASE  "210  -KILL  "377  -XOFF
ABBREV MY.ABBREV -ON
RDY  -READY_BRIEF  Hello
DEFINE_GVAR MY.GVAR
SLIST NOTES

r
Fifth  Edition  8-13



PRIMOS User's Guide

The command lines have the following meanings:

TERM -ERASE *210 -KILL A377 -XOFF
three options to set new erase and kill characters and enable the use of

This entry uses the TERM command with
(Tj andcm

ctri | fo] to stop and start screen output. The options are

Option
-ERASE A210

KILL A377
-XOFF

Meaning
Sets the erase character to I Backspace] on a Prime terminal. A210 is a special
notation for entering | Backspace | in a file you create with ED.
You enter a nonprinting character with ED by giving the character's octal
ASCII code in the following format: Noctal number. You can find the octal
number for any character in Appendix C, The Prime Extended Character Set.
In this case, 210 is the octal code for | Backspace \

Note
You use the *octal number format to enter a nonprinting character in a
file using ED. If you list the file using SLIST, Aoctal number does not
appear in the listing. Instead, the nonprinting character appears as a
blank or as some other symbol, depending on the terminal.

If you are creating a CPL file with EMACS, consult the EMACS documenta
tion to find out how to enter nonprinting characters. For more information on
the representation of nonprinting characters in PRIMOS, see Appendix C.
Sets the kill character to | Delete | on a Prime terminal.
Allows you to use I ctri | [s] and | Ctrl 1 [~Q~] to switch terminal output on and
off. See Chapter 1 for further information on this and other options of the
TERM command.

ABBREV MY.ABBREV-ON:  This  entry  activates  an  abbreviation  file  in  the  origin
directory called MY.ABBREV. By activiating an abbreviation file with the LOGIN.CPL, you
can make a set of abbreviations automatically available for the subsequent work session.

Note
While your LOGIN.CPL is executing, you are attached to your origin directory. Therefore, a
filename like MY.ABBREV refers to a file in the origin directory. Similarly, if you give a
relative pathname as an argument to any of the commands in your LOGIN.CPL, it refers to a
path relative to your origin directory.

RDY -READYJ3RIEF Hello:
from OK, to Hello.

DEFINE_GVAR MY.GVAR:
directory called MY.GVAR.

This entry changes the short version of the ready prompt

This entry activates a global variable file in your origin

SLIST NOTES: This entry lists a file called NOTES in your origin directory. If you
maintain a file of reminders and messages, using SLIST in your login file can be a
convenient way to have them appear on the screen automatically when you log in.

8-14  Fifth  Edition



Customizing Your Environment

If you store this LOGIN.CPL in your origin directory, PRIMOS executes the commands it
contains every time you log in. When you log in, you see any output from the commands in
the LOGIN.CPL file before PRIMOS puts the ready prompt on the screen for the first time.
In the example, the first commands produce no screen output. After they execute, you see a
listing of the contents of NOTES. Finally, PRIMOS displays the new ready prompt

H e l l o

indicating that you are at command level, and that PRIMOS is ready to accept commands.

Alternate Forms for the Login File
Instead of creating a LOGEN.CPL file, you can create a login file that is a command input
file or a program in one of the languages supported by PRIMOS. The file must be called one
of the following:

LOGIN.COMI
LOGIN.RUN
LOGIN.SAVE

LOGIN.COMI: You can create a command input file called LOGIN.COMI as a login file.
A command input file is a list of PRIMOS command lines, stored in a file with the filename
suffix .COMI. Command input files are explained in detail in Chapter 14.

For simple login files like the one given in the previous section, there is not much difference
between a LOGIN.COMI and a LOGIN.CPL. Command input files are more limited than
CPL files, however. For example, a LOGIN.COMI cannot contain any commands that
require user input. LOGIN.CPL is usually preferable because the CPL programming
language gives you more control over the execution of PRIMOS commands, allows user
input, allows you to use abbreviations, and offers many other features not available in
command input files.

LOGIN.RUN and LOGIN.SAVE: You can create a login file called either LOGIN.RUN or
LOGIN.SAVE using one of the programming languages supported by PRIMOS. If you link
your program with BEND, then your login file is an EPF called LOGIN.RUN. If you use
LOAD, your login file is a static-mode executable file called LOGIN.SAVE. For more
information on compiling and linking programs see Chapters 10 and 11.

Sending Messages
Use the MESSAGE command to send or receive one-line messages. Messages may be sent
from

• Any user terminal to any other user terminal
• Any user terminal to the supervisor terminal (for messages to the operator)
• The supervisor terminal to all users
• The supervisor terminal to a specified user

Fifth  Edition  8-15



PRIMOS User's Guide

If you specify the -NOW option when you send a message, the message is displayed
immediately on the receiver's terminal.

User Messages
The format of a user-to-user or user-to-operator message is

MESSAGE Suser-ID \[-NOW] [-ON systemname]
[̂ -usernumber}

one-line text of message

A r g u m e n t  M e a n i n g
user-ID Identify the recipient of the message. You must include the hyphen before
-usernumber -usernumber. To get a list of user IDs and user numbers for logged in users,

give the STATUS USERS command (explained in Appendix G) or the
MESSAGE -STATUS command (explained in the next section, Querying
Receive States).
To send a message to the supervisor terminal, omit user-id or -usernumber. If -^N^
you send a message to a user-id, all users logged in as that name receive the
message. If you send a message to a -usernumber, only the single user with
that number receives the message.

systemname To send a message to a user logged in to another system in your network,
specify user-id or -usernumber together with the -ON systemname option.
systemname is the nodename of the other user's system. Use the STATUS
NETWORK command to get a list of nodenames for your network.

message text A single-line message with a maximum of 80 characters. Only printing char
acters and | ctri | |g[ (bell) are sent. If you include erase of kill characters, the
line is edited before it is sent.

Sending a message produces two tines of information on the receiver's terminal. The top tine
contains information about the sender; the second contains the text of the message. The
format is

***  sendername  (user  number  [on  systemname])  at  hh:mm
one-line  text  of  message

sendername is the sender's user ID. number is the number of the sender's terminal.
systemname is the name of the system the sender is using, systemname appears only if you are
working on a networked system. hh:mm is the time of day in hours and minutes that the
message was sent (24-hour clock). For example, if user BEECH on system SY3 gives the
command

OK, MESSAGE MAPLE
Hello  to  Maple.

user MAPLE on SY3 sees the following message display:

***  BEECH  (user  66  on  SY3)  at  15:16
Hello  to  Maple.

8-16  Fifth  Edition



Customizing Your Environment

If you don't specify the -NOW option, the message is displayed when the receiver returns to
PREMOS command level.

Setting Receive States
To control the flow of messages, you can set your terminal's receive state with the
MESSAGE command. Use the MESSAGE command with one of the following options.

O p t i o n  F u n c t i o n
-ACCEPT Enables reception of all messages. This is the default state.
-DEFER Inhibits immediate messages. Messages sent to you with the -NOW option are

rejected. You receive messages sent without the -NOW option when you
return to command level.

-REJECT  Inhibits  all  messages.

Deferring or rejecting messages is useful when you do not want messages to interrupt a
terminal session. Otherwise, messages can disrupt the screen display while you are doing
other work.

You cannot send a message while you are in MESSAGE -REIECT mode, and you cannot
send an immediate message (using the -NOW option) while you are in MESSAGE -DEFER
mode. These restrictions exist because the receiver cannot respond to your message.

Querying Receive States
You can find out the receive state of a user's terminal with the -STATUS option of the
MESSAGE command.

The format is

fuser-id  ^|
MESSAGE -STATUS ̂  usernumber I [-ON systemname]

[ m e  J
The different formats list the following information:

C o m m a n d  F u n c t i o n
MESSAGE -STATUS Lists  the  receive  state  of  all  users  on  your  system.
MESSAGE -STATUS user-id Lists the receive state of all users with the name user-id on

your system.
MESSAGE -STATUS usernumber Lists the receive state of the user with the number

usernumber on your system.
MESSAGE -STATUS ME Lists the receive state of your own terminal.

To find the receive state of a user or users logged in to another system in your network,
specify the -ON systemname option with any of the first three command lines listed above. '

Fifth  Edition  8-17



PRIMOS User's Guide

Disk Quotas
To ensure equitable sharing of disk storage, System Administrators and users can set limits
(called quotas) on the amount of storage space that directories can occupy on a disk. You can
set a quota on a directory if you have the appropriate access rights. To set a directory quota
you need Protect (P) access rights (for systems that use ACLs) or Owner (O) rights (for
systems that use directory passwords) to the next higher directory. Normally, this means that
only the System Administrator can set or change quotas on top-level directories. Individual
users can set or change quotas on their own subdirectories if they want to provide personal
checks on their own storage use. The commands for using quotas allow users to

• Set a maximum storage quota on a subdirectory (SET_QUOTA)
• Change an existing quota (SET_QUOTA)
• Examine existing quotas and current storage use (LIST_QUOTA, LD, SIZE)

For more information on these commands, see the PRIMOS Commands Reference Guide.

8-18  Fifth  Edition



Part  li:  Programming



Introduction to PRIMOS Programming

The chapters in Part II introduce you to the programming tools available in PRIMOS. This
chapter provides brief overviews for both experienced and new programmers.

For Experienced Programmers
The PRIMOS programming tools provide a complete development environment for
programming in a wide variety of languages. You can

• Use ED or EMACS to write and edit source code. If you are using EMACS, be sure to
learn about language modes. These enable you to compile and debug programs without
leaving the editor and help you produce correcdy formatted source code. (See Chapter 4
and the EMACS Reference Guide.)

• Compile your source code with one of the compilers supported by PRIMOS. (See
Chapter 10.)

• Use the PRIMOS linking utilities BEND, SEG, or LOAD to produce executable runfiles.
(See Chapter 11.)

• Execute runfiles interactively using the RESUME command. (See Chapter 12.)
• Debug you programs with DBG, the Prime Source Î evel Debugger. (See Chapter 13.)
• Examine and modify your command environment using a variety of PRIMOS

commands. (See Chapter 12.)

For more detailed information, consult the the Prime documentation for the language you are
using.

Introductory Overview
If you are learning to program on a Prime system, the following sections provide a brief
overview of the programming process, which is discussed in detaU in Chapters 10-13.

Fifth  Edition  9-1



PRIMOS User's Guide

The Programming Process
The four basic steps to writing and running a program on a Prime computer are

1. Writing the program source code using a text editor such as ED or EMACS
2. Compiling the program using one of the PRIMOS supported compilers
3. Linking the program using one of the PRIMOS linking utilities
4. Running the program

Since programs seldom run as expected the first time, you often need to debug them as well.
Prime provides the DBG utility to aid you in debugging programs.

Creating the Source Code
Consult the Prime documentation for the language you are using to find out where the Prime
version differs from standards or other versions you may be familiar with. Although most
languages are standardized, every implementation differs slightiy. This is especially true in
the case of input, output, and file operations, which tend to be operating system dependent.
Use a text editor to write your program. If you use EMACS, learn about the EMACS
language modes. These allow you to test, compile, and modify programs in some languages
without leaving the editor. They also help you to produce correctiy formatted source code.
The file that you create with the text editor is called the source code. It is a text file
containing program statements; it cannot be run by the computer in this form. First you must
transform it into an executable file by carrying out two steps: compiling and linking.

Compiling Your Program
Compiling takes a source code text file in any of the Prime supported languages and creates
a new file called an object file. The object file contains your program in a generalized form
that can later be linked to create an executable program. You compile your program using a
utility called a compiler.
Each Prime supported language has its own compiler. General information about the
compilers is given in Chapter 10. For specific information about the compiler for the
language you are using, consult the IMme documentation for that language.

Linking Your Program
Use one of the PRIMOS linking utilities to turn your object file into an program the
computer can execute, called an executable file or runfile. Linking ties your object file to
libraries and other object files that it needs to execute.
In general, your object file needs to be linked to one or more libraries before it can run. A
library is a standard subprogram that carries out certain functions, such as input and output
operations, for your program. Consult the documentation for the compiler you are using to
find out which libraries you need to link to your program.

9-2  Fifth  Edition



Introduction to PRIMOS Programming

Besides linking libraries to your object file, you can also link together several of your own
object files to create a single executable program. This makes it much simpler to develop and
modify large programs, because you can write, compile, and test the program a section at a
time.

You can write different parts of a program in different languages. The object files created by
different language compilers are compatible. As a result, you can write different parts of a
program in different languages, compile them with the appropriate compilers, and then link
the object files together into a single program.

Linking Utilities: PRIMOS provides three linking utilities: BEND, LOAD, and SEG. Each
utility creates a different kind of executable file.
The prefered linking utility is BEND. This creates an executable file called an Executable
Program Format (EPF). EPFs are more flexible than the executable files created by the
other linking utilities, because they are dynamic; the computer can execute them in any
available memory space. Because the computer can locate EPFs wherever memory is
available, it can simultaneously keep several EPFs in memory without conflict. This means,
for example, that you can begin to execute one EPF, halt its operation, execute a second EPF
or PRIMOS commands, and then resume operation of the first EPF wherever it was halted.

The executable files produced by LOAD are static. PRIMOS can execute static-mode
programs in a single area of memory only, and can keep only one static-mode program in
memory at a time. As a result, static-mode programs cannot be stopped and started as freely
as EPFs.

(The SEG linker is not covered in this book. See the SEG and LOAD Reference Guide for
more information.)

Note
The choice of linking programs can introduce one complication. Your object file must be
compiled in an addressing mode that is compatible with the linker you use. The addressing
mode determines how the compiler calculates memory addresses in your program. If you use
BIND, this is not a problem, because all the compilers produce a compatible addressing mode by
default. If you aren't using BIND, you may need to specify another addressing mode. Chapter
10 explains how.

Running  Your  Program
Once you have linked your program to create an executable file, it is ready to run. You run
programs interactively by giving the PRIMOS RESUME command. The details of this
process are given in Chapter 12.

Debugging  Your  Program
Since most programs don't run as expected the first time, you usually have to modify,
recompile, link, and attempt to run your program several times. To help you with this
process, PRIMOS provides a debugging utility called DBG. DBG allows you to keep track
of your program's operation while you are testing it. You can, for example, halt the program
at predetermined points and examine the values of variables to be sure they are behaving as
expected. DBG's features are summarized in Chapter 13.

Fifth  Edition  9-3



PRIMOS User's Guide
~ >

More Information
You can do most simple programming on a Prime computer with two sources of information:

The Prime documentation for the language compiler that you are using
Chapters 10-13 of this book

Remember, however, that the Prime language documentation describes the Prime
implementation of each language. Prime language documentation generally assumes that you
already have some familiarity with programming in the language documented. If you are
beginning to use a language for the first time, a standard text for that language is also
helpful. You can then use the Prime documentation to learn where the Prime implementation
differs from the standard. The Prime documentation also gives you language-specific
information on the compiling and linking processes.

9-4  Fifth  Edition



Compiling  Programs

Compiling is the first step in a two part process that transforms source files written in high-
level programming languages into programs that can be run by the computer:

1. You compile your source code using one of the PRIMOS compilers. The compiler
creates a file containing your program in a generalized form called an object file
(sometimes also called a binary file).

2. You then link the object file using one of the PREMOS linking utilities to create an
executable file that can actually be run by the computer.

This chapter shows you how to compile programs. The linking step is discussed in Chapter 11.
Each of the programming languages supported by PREMOS has its own compiler. The
compilers are listed in Table 10-1.
This chapter discusses topics common to all compilers:

• Source files
• Comptiers
• Object files
• Addressing modes
• Listing files and cross-reference files

The individual language guides cover details of specific Prime supported languages and their
compilers.

The Source File

r

Use either the ED or EMACS text editor to create source files. If you use EMACS, learn
about the EMACS language modes. For many of the Prime supported languages, the
language modes allow you to edit, compile, and debug your program without leaving the
editor. Compder error messages appear in one window of your screen while the offending

Fifth  Edition  10-1



PRIMOS User's Guide

TABLE 10-1
PRIMOS Language Compilers

Compiler Language

CBL COBOL 74

CC

F77 FORTRAN 77

FTN FORTRAN IV

PASCAL Pascal

PL1 PL/I

VRPG RPG II (V-mode compiler)

PMA Assembly

source file text appears in the other. EMACS language modes also provide several tools to
help you produce correctly formatted source code. See the EMACS Reference Guide for
information on the EMACS language modes.
Refer to Prime documentation for the language you are using to find out where the Prime
implementation differs from standard versions. This is especially important in the case of
input, output, and file operations, which are often operating system dependent. If you want
your programs to call PRIMOS subroutines directiy, consult the Subroutines Reference series
for detailed information.

Filename Conventions
The name you choose for your source file should use one of the standard compiler name
suffixes listed in Table 10-2. For example, a FORTRAN IV program with the basename
DRAGON should be named DRAGON.FTN, while a FORTRAN 77 program with a
basename WYVERN should be named WYVERN.F77. These suffixes are the defaults
expected by the compilers when they are invoked. Using these suffixes also helps you keep
track of your program files and maintains consistency with other filenames on the system.

Invoking  Compilers
Invoke a compiler from PRIMOS command level with the following command:

compiler pathname [options]

10-2  Fifth  Edition



Argument/Option
compiler

pathname

options

Compiling Programs

Meaning
Specifies the name of the compiler for the language in which your source
program is written. Names for currently available compilers are listed in Table

Specifies the pathname of your source program. If the source program is in
your current directory, you can use an objectname alone.
Let you control

• The creation of output files
• Addressing modes
• The debugger interface

TABLE  10-2
Recognized Language and Compiler/Linker Filename Suffixes

Suffix Meaning Recognized by Supplied by
.BASIC BASIC/VM source file BASIC/VM compiler User

.CBL COBOL 74 source file CBL compiler User

.CC C source file CC compiler User

.F77 FORTRAN 77 source file F77 compiler User

.FTN FORTRAN IV source file FTN compiler User

.PASCAL Pascal source file PASCAL compiler User

.PL1 PL/I source file PL1 compiler User

.PMA PMA source file PMA assembler User

.RPG RPG II source file VRPG compiler User

.VRPG RPG II source file VRPG compiler User

.BIN Object file (created by compiler) BEND, SEG, LOAD Compilers or user

.LIST Listing file (created by compiler) Compilers or user

.RUN Runfile created by V-mode
linker, BIND

BEND, RESUME BIND or user

.SAVE Runfile created by R-mode
linker, LOAD

LOAD, RESUME LOAD or user

.SEG Segment directory created by
SEG

SEG SEG or user

Fifth Edition 10-3



PRIMOS User's Guide

Specifying the Source Filename
Each compiler recognizes one of the standard filename suffixes by default. If you have used
the standard suffix for your source filename, you need not specify the suffix when invoking
the compiler. When you invoke a compiler without giving a suffix to the pathname, the
compiler looks first for a file called pathname.suf fix, where suffix is the standard sourcename
suffix for the compiler. If pathname with a standard suffix is not found, the compiler then
looks for pathname without the identifying suffix. For example, typing FTN DRAGON
causes the FTN compiler to look first for DRAGON.FTN. If it doesn't find DRAGON.FTN,
it looks for a file called simply DRAGON.

Compiler Defaults
By default, all compilers

• Produce object files
• Do not produce listing or cross-reference files
• Generate 64V-mode code

Options to change these defaults and use the debugger interface are described in the
following sections.

Object Files
By default, all compilers create object (or binary) files.

Object Filenames
The compilers supply default object filenames automatically. The default name of an object
file depends on the filename of your source program. If you use a source filename with a
standard compiler name suffix in the form basename.suffix, the default object filename is
basename.BIN. For example, when you compile the source file PAYROLL.CBL, the CBL
compiler produces an object file called PAYROLL.BEN. If the name contains no suffix, the
default object filename is B_filename. For example, if you use the PASCAL compUer to
compile the source file SORT, the object file is called B_SORT.
It is strongly recommended that the filenames of your source programs use standard
comptier-identifying suffixes. All your object filenames then automatically have the .BIN
suffix. All three tinkers (BEND, SEG, and LOAD) expect object files with the default suffix
.BEN, so compiling and linking are easier if you stick with the standard suffixes from the
beginning.

The-BINARYOption
Use the -BINARY option either to create a nondefault object filename or to suppress
creation of an object file altogether. This option also allows you to add the .BEN suffix to the

10-4  Fifth  Edition



Compiling Programs

filename of your object file, even if the filename of your source program does not contain a
standard compiler-idendfying suffix.

With the CC and FTN compilers, the following arguments are available for the -BINARY
option:

Op t ion /Argument  Mean ing
-BINARY  YES  Creates  a  object  file  with  the  default  name
-BINARY  NO  Does  not  create  a  object  file
-B INARY pathname Creates an object file called pathname

Use the following arguments and options with the CBL, F77, PASCAL, PLI and VRPG
compilers:

Op t ion /Argument  Mean ing
-BINARY  Creates  an  object  file  with  the  default  name
-NO_BINARY  Does  not  create  an  object  file

(Use -NOBINARY with the CBL compiler)
-BINARY pathname Creates an object file called pathname

Addressing Modes
The addressing mode determines how the compiler calculates addresses in your program.
Prime supported compilers are capable of generating code using a variety of addressing
modes. Table 10-3, at the end of this section, shows the addressing modes available with each
compiler. Choose a mode that is compatible with the linking utility you are planning to use.
(Linking utilities are discussed in the next chapter.) It is recommended that you use the BEND
linking utility, which requires code compiled in either of the I or V modes. In most cases, use
64V mode, which is the default for all the compilers.

Vand I Modes
Use V and I addressing modes for single or multisegmented programs, which can be as large
as 32MB. Programs in these modes can take full advantage of the virtual address space. You
can link V-mode and I-mode code with the recommended BEND utility to produce EPFs.

Mode  Description
The most generally useful mode. It takes full advantage of the virtual address space and
allows you to use BIND to create EPFs.
Handles double precision floating-point arithmetic more rapidly than the other modes
do. Therefore, it is the mode of choice for many mathematical calculations. To generate
321-mode code, use the -321 option. The following example compiles the FORTRAN77
program CHEERS in 321 mode:

OK,  F77  CHEERS  -321

Fifth  Edition  10-5

64V

321



PRIMOS User's Guide

32IX The F77 and CC compilers can generate 32IX-mode code, an enhanced 321-mode code
that gives improved performance when accessing large data objects, such as segment-
spanning arrays or common blocks. Programs compiled with the -32IX option can be
run on most Prime computers. Earlier machines may need to be upgraded. Check with
you System Administrator or operator to see if your computer is able to use code com
piled in 32LX mode.

Note
References in this book to I and 321 mode apply to both 321 and 32IX modes.

R Mode
R mode is an addressing mode used only for single segment programs. A single segment
program cannot exceed 128K bytes. You must link R-mode code with the LOAD utility to
produce a static mode executable file, which is not as flexible as an EPF.

TABLE 10-3
Compiler Addressing Modes

Addressing Mode

Compiler 321 32IX 64V 64R 32R

CBL

CC

F77

FTN

PASCAL

PLI

VRPG

X indicates that a mode is available with a compiler.

Listing  Files
Each compiler can create a file that lists the source program. Use the -LISTING option to
create a listing file. Compiler specific options are available to expand these listings and add
more information. When a listing file is created, it is named by the compiler in the same way
as the object file, using the .LIST suffix instead of .BEN suffix. If your source file has a
standard compiler name suffix, the listing file is called basename.LIST. For example, the
listing file for DRAGON.FTN is DRAGON.LIST. If the source filename does not have a
standard compiler name suffix, then the listing file is named L_basename.

10-6  Fifth  Edition



Compiling Programs

oTion6 CC m<1 F™ C°mpilers' the foUowing arguments are available for the -LISTING

Option/Argument
-LISTING [YES]
-LISTING NO
-LISTING pathname
-LISTTNG TTY
-LISTING SPOOL

Meaning
Creates a listing file with the default name
Does not create a listing file
Creates a listing file called pathname
Displays the listing file at your terminal
Prints the listing file on a line printer (not available with the CC
compiler)

For the CBL, F77, PASCAL, PLIG, and VRPG compilers, use the following options and
arguments:

Option/Argument
-LISTING
-LISTING pathname
-LISTING TTY
-LISTING SPOOL
-NO_LISTTNG

Meaning
Creates a listing file with the default name
Creates a listing file called pathname

Displays the listing file at your terminal
Prints the listing file on a line printer
Does not create a listing file

Cross-references
The compilers can also create cross-reference listings that show where variables appear in the
program and provide other useful information. Listings are different for each language;
specific details are given in each compiler guide. The -XREF option generates a cross-
reference listing and appends it to the program listing. (If you have not specified the
-LISTING option, the -XREF option creates a program listing for you.)

Compiler Messages
If an interactive compilation completes successfully, a message to that effect is displayed at
your terminal. (If the compilation is not interactive, the message may be written to a COMO
file. See Chapter 14 for information on COMO files.) If compilation is not successful, error
and/or warning messages indicate the line where the error occurred and the type of error
Some severe errors halt the compilation as soon as they are discovered. Others allow the
compilation to proceed. Each compiler has its own error messages.
Error messages produced by the CBL, CC, F77, PASCAL, and PL1 compilers include
explanatory comments. Error messages produced by the FTN compiler are explained in the
FORTRAN Reference Guide.

r
Fifth  Edition  10-7



PRIMOS User's Guide

Combining Languages in a Program
Because all high-level languages are compatible at the object code level and use the same
calling conventions, programs compiled by the CBL, CC, F77, FTN, PASCAL, and PL 1
comptiers can call subroutines compiled by any of the other compilers as long as they have
been compiled using compatible addressing modes. For example, a program written in
COBOL 74 can call a subroutine written in FORTRAN 77, which can, in turn, use a utility
subroutine written in PL/I. Procedures compiled by the high-level language compilers may
also call, or be called by, procedures written in the Prime assembler language, PMA.
When combining programs written in different languages, observe the following precautions:

• Write all input and output routines in a single language.
• Be sure that there is no conflict in data types for variables being passed as arguments.

For example, an ENTEGER*2 in FORTRAN must be declared as FIXED BEN(15) in
PL/I.

• Compiled code must use compatible addressing modes. In general, code compiled in
one of the I or V modes can call code compiled in any of the 1 or V modes. R-mode
code can only call and be called by R-mode code.

• You must observe some special restrictions when FORTRAN IV and FORTRAN 77
routines are linked. These are discussed in the FORTRAN 77 Reference Guide.

A complete discussion of passing data types between languages appears in Subroutines
Reference I: Using Subroutines.

10-8  Fifth  Edition



Linking  Programs

Once you have compiled a program using one of the PRIMOS compilers, you must link it
with one of the linking utilities provided by PREMOS. These utilities process your object file
to create a program, called an executable file or runfile, that can actually be run by the
computer.
Prime offers three linking utilities: BEND, SEG, and LOAD. BIND and LOAD are discussed
in this chapter. Topics covered are

• The advantages of the BEND tinker
• The linking process
• Using BEND
• Using LOAD

The discussion in this chapter covers features common to linking programs written in all
languages. For language specific information, consult the Prime language documentation for
the language you are using. For more information on BIND and EPFs, consult the
Programmer's Guide to BIND and EPFs. For information on SEG, consult the PRIMOS
Commands Reference Guide and the SEG and LOAD Reference Guide.

Advantages of the BIND Linker
Always use BIND, unless you have to link an R-mode program. BIND is a friendlier linker
than LOAD. You can run BEND either as an interactive subsystem, or from the command
line. En interactive mode, BEND accepts subcommands one at a time. Alternatively, you can
give all the BEND subcoinmands together on the command tine when you invoke BEND.
BEND is especially recommended, because it creates dynamic runfiles, called Executable
Program Formats (EPFs). EPFs offer many advantages to the user.

Fifth  Edition  11-1



PRIMOS User's Guide

The Advantages of EPFs
An EPF is not bound to any specific area of memory. When you invoke an EPF, PRIMOS
can load it into any available area of memory.

• Several programs, even suspended programs, can exist in memory at one time without
interfering with each other.

. A suspended EPF can often be restarted using the START command even if other
programs have been invoked since it was suspended.

• EPFs can freely call and be called by other EPFs without concern that one program may
overwrite another.

• You never have to share programs explicitly. PRIMOS automatically shares EPFs
among users.

• You can create personal EPF libraries that can be dynamically linked to your programs.

In contrast, LOAD creates static runfiles. These runfiles are static because they must always
be executed in the same area of memory. Whenever a new static-mode program is invoked, it
overwrites any other static-mode program already in memory. Therefore, only one static-
mode program can exist in memory at a time.

Linkers and Addressing Modes
You must compile your object file using the correct addressing mode for the linker you plan
to use:

• BEND requires V-mode code or I-mode code
• LOAD requires R-mode code

Converting Static Programs to EPFs
You can usually convert old static-mode programs to EPFs by relinking or recompiling and
relinking. You can convert most static-mode programs that were compiled in I mode or V
mode and linked with SEG simply by relinking with BEND. Static-mode programs that were
compiled in R mode and linked with LOAD, must be recompiled and relinked. Depending on
the language, such programs may require some modification of the source code. For possible
restrictions on conversion to EPFs, see the Programmer's Guide to BIND and EPFs.

The Linking Process
BEND and LOAD work quite differently, but they share some basic features. The basic task
of a linker is to resolve the external references in your program. External references are
calls to subroutines not included in your program code itself. These can include

• Separately compiled user-supplied subroutines
• Libraries of various types
• PRIMOS resources

11-2  Fifth  Edition



Linking Programs

User-supplied Routines
User-supplied subroutines are program modules that you have developed and compiled
separately from the main program. The linker incorporates these routines in the executable file.

Libraries
Libraries are sets of subroutines that may be shared by many programs. The linker provides
links from your executable file to these subroutines. Libraries can be of various types:

L i b r a r y  t y p e  U s e
Language-specific Contain routines called by programs written in a specific language
PRIMOS standard Contain routines called by programs in all languages

Application-specific Contain routines used by some applications
User  supplied  Contain  routines  created  by  users  with  BIND

In order to link your program successfully, you need to link all required libraries. Required
language-specific libraries are listed in Table 11-1. Consult the documentation for the
language you are using for more details.

Application and user libraries are not discussed in this book. For information on applications
libraries see Subroutines Reference IV: Libraries and I/O. For information on user libraries
consult the Programmer's Guide to BIND and EPFs and the Advanced Programmer's Guide
Vol I.

TABLE 11-1
Language Specific Library Names

Compiler Library Name

CC C LEB
CBL CBLLIB
PASCAL PASLIB
PL1 PLILIB
VRPG VRPGLB

The following sections on BEND and LOAD explain how to link libraries.

Using BIND
BEND is the preferred linker for most object files. Invoke BIND with the command

BIND [pathname] [options]

The  optional  pathname identifies  the  EPF to  be  created.  The  options  are  BEND
subcommands, the most important of which are explained in the next section.

Fifth  Edition  11-3



PRIMOS User's Guide

You can use BEND in two ways:

• On a single command line
• As an interactive subsystem

Using a Single Command Line
When you use BEND with a single command line, the command line must include all options.
The options can be any of the BEND subcommands discussed in the following sections. Each
option must be preceded by a hyphen.

Using BIND Interactively
If options are not specified on the command tine, the linking session is interactive, whether or
not pathname is specified. In interactive mode, BEND prompts you for each subcommand
with a colon (:). After executing a subcommand successfully, BEND repeats the : prompt.

If an error occurs during an operation in interactive mode, BIND displays an error message
and then the prompt character. For a complete list of BEND error messages, see the
Programmer's Guide to BIND and EPFs. When BEND encounters a system error, it displays a
system  error  message,  such  as  File  in  use,  Illegal  name,  or  Insufficient
access rights, and returns the prompt symbol.

In interactive mode, BEND remains in control until either a FILE or a QUIT subcommand
returns control to PREMOS.
BEND subcommands and comment lines can be used in command files.

BIND Subcommands
Linking with BEND normally requires only a few straightforward commands. (BEND has
many additional features that enable you to perform difficult linking tasks. These are
described in the Programmer's Guide to BIND and EPFs.) The following commands
accomplish most linking functions. Enter each command either as an option (preceded by a
hyphen) on the command line or as a subcommand after the : (colon) prompt.

C o m m a n d  F u n c t i o n
LOAD pathnamej [... pathname_n]

Links the object file(s) of one or more programs that have been com
piled in V or I mode. You can omit the .BEN suffix, because BEND
automatically looks for a filename with the .BIN suffix.

LIBRARY [libraryname 1 ... library name _h\
Links one or more library files. If the library is supplied by Prime, it
is located in the top-level directory LIB, and the library's objectname
alone is adequate. If the library is user-supplied and not in LIB, a
pathname is required. The objectnames for language-specific libraries
are given in the Prime documentation for each language and in Table
11-1.
Typing the command LIBRARY without any arguments links the
standard system library, named PFTNLB, by default All languages
require that you link this library.

11-4  Fifth  Edition



Linking Programs

MAP [opfto/i]  Displays  a  memory  map.  The  -UNDEFINED option  lists  unresolved
references (usually either subroutines that have not been linked or
misspelled references in the source code). The -FULL option gives a
complete map. Mapping is explained in the Programmer's Guide to
BIND and EPFs.

FILE [pathname] Saves the newly created EPF as a file, with the filename suffix
.RUN. You can determine the filename of the EPF in three ways:

•  If  you  give  a  pathname  argument  to  the  FILE
subcommand, the EPF is saved, using this pathname, as
pathname.RUN.

• If you gave a pathname argument to the BEND command
(but not to the FILE subcommand), the EPF is saved,
using this pathname, as pathname.RUN.

• Otherwise, BEND uses the first pathname given to a
LOAD subcommand to create pathname.RUN for the
EPF.

When you use BEND interactively, you must end your session with
the FILE subcommand in order to save the newly created EPF If
you use BEND in command line mode, the EPF is saved
automatically, and the FILE subcommand is optional; you need to
use it only if you want to specify a new name for the EPF.
After you save the EPF with the FILE subcommand, BEND returns
you to PRIMOS command level.

Q111  Returns  you  to  PRIMOS  command  level  without  saving  the  current
EPF.

r {subcommand^ 1 Displays m explanation and correct syntax of the specified BINDHELP -i_LIST V subcommand. The -LIST option lists all BEND subcommands.

Normal Linking
Use the following interactive procedure to link most programs:

1. Give the command BIND [pathname].
2. Use the LOAD subcommand to link the object file of your program and any

separately compiled subroutines. If you are linking more than one file, you can either
give the LOAD subcommand with several pathnames, or give a separate LOAD
subcommand for each file.

3. Use the LIBRARY subcommand to link the required libraries. Remember that the
default standard system library is always required. If you are linking several libraries
you can either give the LIBRARY subcommand once with several pathnames (or '
objectnames), or give a separate LIBRARY subcommand for each library.

4. At this point you should receive the BIND COMPLETE message. If you do not receive
a BIND COMPLETE message, you have probably omitted or mispelled some library
name during linking. If this is the case, use either the LOAD or the LIBRARY
subcommand to relink from the point at which the omission or misspelling occurred

Fifth  Edition  11-5



PRIMOS User's Guide

If \ou have misspelled subroutine names in your program, you need to edit,
recompile, and then relink the program. If you cannot easily identify the unresolved
references, use the -UNDEFINED option of the MAP subcommand to help you. The
MAP subcommand is discussed in the Programmer's Guide to BIND and EPFs.

5. When you have received the bind COMPLETE message, use the FILE subcommand
to save the EPF.

Remember that you have three ways to name your EPF:

• Giving the BIND command a pathname.
• Giving the FILE subcommand a pathname. This method of naming overrides any other.
• If you do neither of the above, BEND uses the name of the first object file linked with

the LOAD subcommand.

BEND automatically adds the .RUN suffix.

Order of Linking
The following order of linking is recommended:

1. Main program (LOAD pathname).
2. Separately compiled user-supplied subroutines in the order in which they are called

(LOAD pathname).
3. User-supplied libraries (LIBRARY pathname). BEND looks for them in the location

specified in pathname.
4. Language-specific libraries (LIBRARY libraryname). See Table 11-1 for the names of

the required language-specific libraries. Language-specific libraries are not required
for programs written in FORTRAN IV, FORTRAN 77, and PMA.

5. Other Prime Libraries (LIBRARY libraryname), such as VAPPLB for the V-mode
applications library, VSRTLI for the V-mode sort library, and MPLUSLB for the
MIDASPLUS library.

6. Standard system library (LIBRARY), required by BEND to link programs in all
languages.

BIND Examples
The following examples assume that your current directory contains an object file named
CERCLE.BIN. The F77 compiler created this object file when it compiled your program
CERCLE.F77. In the first example, the BEND command itself is used to name the EPF:

OK,  BIND  CIRCLE
[BIND  Rev  22.0  Copyright  (C)  1987,  Prime  Compter,  Inc.]
:  LOAD  CIRCLE
:  LIBRARY
BIND COMPLETE
:  FILE
OK,

11-6  Fifth  Edition



Linking Programs

Because the LOAD subcommand recognizes the .BEN suffix for object files, the suffix need
not be typed. Also, because this program is written in FORTRAN 77, only the standard
system library needs to be linked, so the LIBRARY subcommand is used only once, without
a pathname argument. (Remember, the standard system library is the default value.)

Noninteractively, the same linking session can be accomplished on a single command line:

OK,  BIND  CIRCLE  -LOAD  CIRCLE  -LIBRARY
[BIND  Rev  22.0  Copyright  (C)  1987,  Prime  Compter,  Ine  1
BIND  COMPLETE
OK,

When BEND is used noninteractively, the FILE subcommand is added by default to the end
of the command tine and need not be typed.
Both of the above examples can be simplified, however. Because the EPF uses the name of
the first object file linked (that is, CIRCLE), the BIND command needs no argument:

OK,  BIND
[BIND  Rev  22.0  Copyright  (C)  1987,  Prime  Compter,  Inc.]
: LOAD CIRCLE
:  LIBRARY
BIND COMPLETE
:  FILE
OK,

The noninteractive version is

OK,  BIND  -LOAD  CIRCLE  -LIBRARY
[BIND  Rev  22.0  Copyright  (C)  1987,  Prime  Compter,  Inc.]

BIND  COMPLETE
OK,

In all cases, BEND saves the EPF CERCLE.RUN in your current directory.
If you do not give the BEND command an argument and do not want the EPF to be named
after the first object file linked, you must use the FILE subcommand to name your EPF:

OK,  BIND
[BIND  Rev  22.0  Copyright  (C)  1987,  Prime  Compter,  Inc.]
: LOAD CIRCLE
:  LIBRARY
BIND COMPLETE
:  FILE  AREA_CIRCLE
OK,

The noninteractive version uses the -FILE option:

OK,  BIND  -LOAD  CIRCLE  -LIBRARY  -FILE  AREA_CIRCLE
[BIND  Rev  22.0  Copyright  (C)  1987,  Prime  Compter,  Inc.]
BIND COMPLETE
OK,

Fifth  Edition  11-7



PRIMOS User's Guide

In both cases, BEND saves the EPF AREA_CERCLE.RUN in your current directory.

Finally, here is an example of retrying a linking session when you do not receive the BEND
COMPLETE message. In this case, the main Pascal program calls a PL/I subprogram.

OK, BIND
TBIND  Rev  22.0  Copyright  (C)  1987,  Prime  Compter,  Inc.]■  L Q A D  p A S S  L i n k  t h e  m a i n  p r o g r a m .

L O A D  V A L  L i n k  t H e  C a l k d  P r ° 8 r a m -
l i b r a r y  P A S L I B  L i n k  t h e  P a s c a l  l i b r a r y .
L I B R A R Y  P L 1 G L B  ^ « *  t h e  P L 1 G  h f c r f l ^

No BIND COMPLETE; message,
you forgot the standard library.

•  L I B R A R Y  L i n k  t h e  w s s t o i  s t a n d a r d
system library.

BIND COMPLETE
.  p t t t ?  S a v e  t h e  E P F  a n d  r e t u r n

to PRIMOS level.OK ,

After a successful linking session, you can execute the EPF at PRIMOS command level with
the RESUME command, as detailed in Chapter 12.

U s i n g  L O A D  ^
Use the LOAD utility for linking object files compiled in 32R or 64R mode. LOAD creates
executable runfiles identified by the .SAVE suffix.

Note
The following description emphasizes the linker commands and functions that are of most use to
the FORTRAN programmer. For a complete description of all linker commands, including those
for advanced system-level programming, see the SEG and LOAD Reference Guide.

To invoke the LOAD linker, use the command

LOAD

This transfers control to the R-mode linker, which displays a dollar-sign ($) prompt and
awaits a LOAD subcommand. After executing a command successfully, LOAD repeats the $
prompt.
If an error occurs during an operation, LOAD displays an error message and then the $
prompt. For a complete list of LOAD error messages, see the SEG and LOAD Reference
Guide. When LOAD encounters a system error it displays the system error message and then
the $ prompt.
LOAD remains in control either until a QUIT or PAUSE subcommand returns control to
PRIMOS or an EXECUTE subcommand starts execution of the linked program.

You can use LOAD subcommands in command files.

71-8 Fifth Edition



Linking Programs

Normal Linking

_SHf L?^° n°rmfUy requireS 0nly a few straightforward commands. LOAD has many£f_?JS5£_ S_perfom difficuIt Ifakins tafate m ™ *
The foUowing coinmands accomplish most linking functions.

Helpful PRIMOS Commands:

Command
FILMEM
LOAD

LOAD Subcommands:

Command
DC

MODE option
LOAD pathname
LIBRARY [libraryname]

MAP [option]

INITIALIZE

SAVE [pathname]

QUIT

Function
Initializes user space in preparation for linking.
Invokes LOAD for entry of subcommands.

Function
Defers linking of COMMON until everything else has been linked.
This delay prevents overlap of COMMON and program areas.
Sets runfile addressing mode as 32R (default) or 64R.
Links specified object file. The .BIN need not be typed.
Links specified library object file from the top-level directory LIB
(Default is FTNLIB.)
Displays a memory map. The options are numbered. MAP -3 shows
unresolved references.
Returns LOAD to starting condition in case of command errors or
faulty linking.
Saves the runfile pathname.SANE in the specified directory. If
pathname is not given, LOAD uses the name of the first object file
linked and adds the .SAVE suffix.
Returns you to PRIMOS command level.

Most linking sessions can be accomplished with the following basic procedures:

1. Use the PREMOS command FILMEM to initialize memory.
2. Invoke LOAD.
3. Use the MODE subcommand to set the addressing mode, if necessary. (The default is

32R mode.)
4. Use the LOAD subcommand to link the object file and any separately compiled

subroutines. (LOAD searches first for filenames plus the .BEN suffix, then for the
given filenames without the suffix.)

5. Use the LIBRARY subcommand to link subroutines called from libraries The default
library is FTNLIB in the top-level directory LIB. Other libraries, such as SRTLIB or
APPLIB, must be named explicitiy. (Link user supplied libraries with the LOAD
subcommand.)

Fifth  Edition  11-9



PRIMOS User's Guide

6 If you do not receive a LOAD complete message, use MAP -3 to identify the
unsatisfied references, and link them. (If you use the DC option, the LOAD
COMPLETE message may not appear until you give the SAVE command.)

7. SAVE the runfile, either by giving an appropriate name or by allowing LOAD to
create a default filename.

8. Use the QUIT subcommand to return to PRIMOS.

If Step 6 produces a LOAD complete message, then linking was accomplished. Any
problem becomes apparent by the absence of a LOAD COMPLETE message or some other
LOAD error message.
After a successful linking session, you can execute your runfile from PRIMOS command
level with the RESUME command. See Chapter 12.
The following example assumes that the source program TEST.FTN was compiled in 32R
mode to produce the object file TEST.BIN.

OK, FILMEM
OK, LOAD
$ DC
$ LOAD TEST
$ LIBRARY
LOAD COMPLETE
$ SAVE
$ QUIT
OK,

The user's current directory now contains the runfile TEST.SAVE, ready to be executed by
the RESUME command.

Order of Linking
The order of linking and procedures for mapping are the same for LOAD as they are for
BEND. Note, however, that you use the LOAD subcommand instead of the LIBRARY
subcommand to link user-supplied libraries with LOAD.

11-10  Fifth  Edition



Running  Programs  Interactively

PREMOS provides three environments for executing programs:

• interactive
• Phantom
• Batch

When you execute a program interactively, your terminal is dedicated to the program during
execution. You may halt the program or give input from the keyboard, program output is
displayed on the screen, and any error messages are directed to the screen. While the program
is running, you can't use the terminal for anything else.
Programs executed as phantoms or in the Batch environment don't communicate directiy with
your terminal. Any program that does not require user input can be executed in this way in
order to free up your terminal for other work while the program is executing. Phantoms and
the Batch environment are discussed in Chapter 16.
This chapter shows you how to run programs interactively. Topics covered include

• Using the interactive environment
• Running programs with the RESUME command
• Restarting interrupted programs with the START command
• Error messages

The command environment•

r
r

Using the Interactive Environment
Typical uses for interactive execution are

• Program development and debugging
• Programs requiring short execution time

Fifth  Edition  12-1



PRIMOS User's Guide

• Data entry programs
• Interactive programs, such as ED

Most of the time, you run programs interactively because they require some input at the
terminal or produce output on the screen. However, you can interactively run a program that
requires no terminal input and produces no screen output. Your terminal is still dedicated to
such a program while it runs; you cannot ran other programs until the program terminates and
you receive the PRIMOS OK, prompt. Short programs and programs being tested and
debugged are often run this way even if they do not require user input or produce screen
output.

Invoking Programs to Execute Interactively
You can invoke programs to execute interactively in a variety of ways:

• From the command line
• From a command input file
• From a CPL program

The three possibilities mean that programs that ran interactively don't necessarily have to be
invoked interactively from the terminal. In the first case, you invoke a program interactively
by giving a command at the terminal. In the other cases, your command input file or CPL
program invokes the program. Nevertheless, programs invoked from command files and CPL
programs can mn interactively. If you always begin your terminal sessions by working with
EMACS, for example, you can have your login.CPL invoke EMACS for you.
You invoke programs to run interactively with the same commands, whether you do so from
the command line or from a command input file or CPL program.

The RESUME Command
You execute EPFs, R-mode static runfiles, and CPL programs using the RESUME command.
The format is

RESUME pathname

pathname is the name of the program to be executed interactively. If the program is in the
current directory, you can use the filename alone.

Note
Use the SEG command to execute static V-mode or I-mode runfiles that were linked with the
SEG utility. For more information on the SEG command, see the PRIMOS Commands
Reference Guide.

12-2  Fifth  Edition



Running Programs Interactively

Runfile Naming Conventions
In most cases, a program must have a name ending in one of the the standard PRIMOS
runfile suffixes: .RUN for EPFs, .SAVE for R-mode programs, and .CPL for CPL programs
The only excepttons to this rule are R-mode runfile names. An R-mode runfile may have a
name without any suffix. Other types of runfiles must use one of the standard suffixes If
they do not, RESUME attempts to execute them as R-mode files, resulting in an error.
When you give the RESUME command, you can give pathname without using the suffix if
youwish. RESUME searches for a file with one of the correct suffixes in the following

P a t h n a m e  A s s u m p t i o n
pathname.RUN  File  is  an  EPF.
pathname.SA\E  File  is  an  R-mode  runfile.
pathname.CPL  File  is  a  CPL  program.
pathname  File  is  an  R-mode  runfile.

For example, if you type

OK, RESUME CIRCLE

RESUME looks in your current directory first for CERCLE.RTJN, then for CIRCLE SAVE
then for CERCLE.CPL, and last for CIRCLE. RESUME executes any file with an unsuffixed
name as a .SAVE runfile. In cases where ambiguity is possible, give the suffix.

After the RESUME command has completed executing a program, or if an error is
encountered, control returns to PREMOS command level, and you receive the appropriate
screen prompt.

The START Command
You can interrupt a program by typing fc^l H at the terminal. Programs can also be
interrupted by a runtime error or, in the case of FORTRAN programs, by a PAUSE statement
in the program. You can often restart an interrupted program using the START command.

The format is

START

This command attempts to restart the execution of a suspended program at the point where it
was interrupted. For example,

OK, RESUME CIRCLE
TYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE:

|  C t r i  |  f " p ]  e  ,  ,'  ' — '  S u s p e n d s  t h e  p r o g r a m .

Fifth  Edition  12-3



PRIMOS User's Guide

QUIT.
OK, START
33

THE  AREA  OF  THE  CIRCLE  IS:  207.63
OK,

START does not always succeed in restarting suspended programs. Programs that are
interrupted by errors may not be able to execute further. Your ability to restart a program
may also depend on the number of programs you have suspended simultaneously. The
START command treats static-mode and dynamic-mode programs differentiy.

Restarting Static-mode Programs
If you suspend a static-mode program and then invoke another static-mode program, the
second overwrites the first. Therefore, you can only restart the most recendy invoked static-
mode program.

Restarting EPFs
You can suspend and restart EPFs much more freely than static-mode programs. PRIMOS
can bring EPFs into any free area of memory, so that several EPFs can exist simultaneously
without overwriting each other. This means that you can invoke an EPF, suspend it, invoke
other programs, and then restart the first EPF without interference from other programs.
For example, you can execute two EPFs called CERCLE.RUN and DEGREE.RUN in the
following way:

OK, RESUME CIRCLE
TYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE:

|  c t r i  |  | " p ~ |  Y o u  i n t e r r u p t  t h e  p r o g r a m .

QUIT.
OK, RESUME DEGREES

ENTER A TEMPERATURE IN FAHRENHEIT DEGREES:
32

THE  CONVERSION  TO  CENTIGRADE  IS:  0.000000
O K  S T A R T  Y o u  r e s t a r t  t n e  f i r s t  P r ° g r a m  a n d
3 3  i n p u t  t h e  v a l u e  r e q u e s t e d  e a r l i e r .

THE  AREA  OF  THE  CIRCLE  IS:  207.631
OK,

You cannot carry out the same procedure with two static-mode programs. If the two runfiles
are static-mode programs called CERCLE.SAVE and DEGREES.SAVE, for example, the
START command returns the following error message:

Attempt  to  proceed  to  overwritten  program  image.  (listen_)
ER!

12-4  Fifth  Edition



Running Programs Interactively

because DEGREES.SAVE has overwritten CERCLE.SAVE. To rerun CERCLE.SAVE in this

agTm l° USC RESUME C°mmand "* CXeCUte ^ Pro§ram from ^ beginning

Using START With Several EPFs
You can successively suspend and restart several EPFs. Successive START commands
attempt to restart the programs beginning with the one most recendy suspended. For example,

OK, RESUME CIRCLE
TYPE IN A VALUE FOR THE RADIUS OF THE CIRCLE:

CM] E
QUIT.
OK, RESUME DEGREES
ENTER A TEMPERATURE IN FAHRENHEIT DEGREES:

I C_ | [P]

QUIT.

OK,  START
32
THE  CONVERSION  TO  CENTIGRADE  IS:  0.000000

OK,  START
33
THE  AREA  OF  THE  CIRCLE  IS:  207.631

OK,

Your System Administrator sets the number of suspended EPFs that you can maintain and
then restart with the START command. This limit is discussed below in the section, The
Command Environment.

Runtime Error Messages
When you execute a program with RESUME or restart one with START, PRIMOS may
detect error conditions. If the program cannot continue execution, it is suspended, a runtime
error message is generated, and you are returned to PRIMOS command level and receive an
error prompt. Appendix D gives a list of runtime error messages.

The Command Environment
Whenever you invoke a program, you make use of a section of PRIMOS called the command
environment. The command environment is the part of PRIMOS that is responsible for
interpreting commands typed at the terminal, invoking and suspending the requested

Fifth  Edition  12-5



PRIMOS User's Guide

programs, and displaying prompts. Among its other tasks, the command environment records
and mainiains information about the status and operation of each program you invoke When
you restart a suspended EPF, the command environment uses the information it has stored to
get the program running from the point at which it stopped.

Command Environment Limits
The command environment lets you work with EPFs in a flexible manner. You can invoke an
EPF suspend its operation, issue commands or invoke other programs, and then restart the
suspended EPF at the point where it stopped. In fact, you can have several EPFs suspended at
once and still be able to restart all of them. You can do all this because PRIMOS can
maintain several suspended EPFs in memory at once without conflict. However, doing so
occupies system resources, and this makes some constraints necessary. Programs take up
room in memory, for example. While virtual memory gives you a large memory space, it is
not an unlimited space. Moreover, your virtual memory space must share the computers
physical resources with other users. Limits on individual use are necessary in order to
maintain system performance for all users.
These limits, called command environment limits, are set for you by the System
Aministrator when your login ID is established. This section describes command environment
limits and shows you how to deal with situations in which you have reached the limits
established for your user ID.
The System or Project Administrator establishes four limits for each user ID:

• Command environment depth
• Command environment breadth
• Number of dynamic segments that can be allocated in your private address space
• Number of static segments that can be allocated in your private address space

Command Environment Depth: Whenever a program is suspended (either because of an
error or because you type \~~(m\ [p]) the command environment returns you to PRIMOS ^_
command level. Each time this happens, you are said to be at a new command level, because
the command environment maintains the information that it needs if you later attempt to
restart the suspended program. By putting you at a new command level, the command
environment allows you to go back later and try to take care of any unfinished business from
previous command levels.
Note that this is quite different from what happens when a program runs to completion. In
that case, the command environment no longer needs to keep the program in a state of
suspended animation while you carry out other work. Therefore, it keeps you at the same
command level. The maximum number of command levels allowed for your user ID is called
the command environment depth. When you log in, you are at command level 1. Every
time a program is suspended, you enter a new command level. If the number of command
levels reaches the command environment depth, you cannot invoke any more programs.

12-6  Fifth  Edition



Running Programs Interactively

vou^^Vir°nmen,t1BTdth:  °ne  Pr°gram  Can  invoke  ■»-««  without  returning
IZZr^  \  ^  leVd  "^  With°Ut  inCreasin^  yQur  «»*na_d  level.  The  maximum^ẑ Lr̂ rnons *""m one ™ ievei is caued «* —
Segment Limits: When you invoke a program, PREMOS allocates one or more segments
in your address space to the program. PRIMOS allocates either static or dynamic «
depending  on  the  type  of  program  to  be  run.  ^gments,
Static-mode programs created by LOAD and SEG are loaded into predefined static segments
A static-mode program overwrites any other static-mode program previously invoked.

Programs created by BEND are called dynamic because they are mapped at runtime into any
unused dynamic segment or segments. They can coexist with other dynamic programs
because one dynamic mode program does not overwrite another.
The System Administrator sets limits on the maximum numbers of dynamic and static
segments that can be allocated within your private address space. You cannot invoke more
programs than can fit in the segments allotted to your private address space.

Checking Your Limits: To find out what command environment limits the Project or
System Administrator has set for your user ED, use the PREMOS LISTJLIMITS command
The format is

LIST_LIMITS

LISTLIMITS displays
• The number of command levels you can use (command environment depth)
• The number of programs you can invoke at any command level (command environment

breadth)
• The number of private dynamic segments you can use
• The number of private static segments you can use

The following example shows how LISTJJMITS displays this information.

OK,  LIST_LIMITS

Maximum  number  of  command  levels:  10
Maximum  number  of  program  invocations:  10
Maximum  number  of  private  static  segments:  100
Maximum  number  of  private  dynamic  segments:  150

OK,

Exceeding Limits: Segment and program invocation limits normally concern only the
advanced programmer. For more information, refer to the chapter on troubleshooting in the
Programmer's Guide to BIND and EPFs.

Fifth  Edition  12-7



PRIMOS User's Guide

Command environment depth concerns anyone using PREMOS who types C^G f£] once too
often If you invoke and suspend several EPFs, it is possible to reach the maximum number
of connnand levels allowed. The rest of this section shows you what to do when you exceed
the maximum number of command levels for your user ID.

Mini-command Level
If you exceed the number of command levels allotted to you, PRIMOS does not allow you to
go on invoking programs or giving other PRIMOS commands normally. Instead, PRIMOS
places you at a special command level called mini-command level. When you are at mini-
command level, you are allowed to give only a very limited subset of PREMOS commands.
These commands are intended to help you diagnose the situation and correct it by reducing
your command level and freeing up system resources.
The following example shows the display you see when you reach mini-command level.

You  have  exceeded  your  maximum  number  of  command  levels.

You  are  now  at  mini-command  level.  Only  the  commands  shown
below  are  available.  Of  these,  RLS  -ALL  should  return  you  to
command  level  1.  If  it  does  not,  type  ICE.
recurs,  contact  your  System  Administrator.

If  this  problem

Valid  mini-commands  are:

Abbrev  Full  name Abbrev  Full  name

c CLOSE COMO COMOUTPUT
DMSTK DUMP STACK ICE INITIALIZE_COMMAND_ENVIRONMENT
LE LIST  EPF LL LIST_LIMITS
LMC LIST  MINI  COMMANDS LS LIST_SEGMENT

LOGIN LO LOGOUT
P PM PR PRERR

RDY REN REENTER
RLS RELEASE_LEVEL REMEPF REMOVE_EPF
S START

At mini-command level, you can execute only those commands listed in the display above.
Using any other command, including personal abbreviations, results in an error message:

OK,  LD
Invalid  command  "LD"
ERI

only  mini  level  commands  accepted.  (min$cp)

Typing another QJD DD produces this message:
Terminal  QUIT  invalid  now.  (listen_)

Mini-commands
Table 12-1 lists a few of the most useful mini-commands. The remainder of this section
shows you how to use these commands to escape from mini-command level.

12-8  Fifth  Edition



Running Programs Interactively

Note
Other rnini-comrnands, such as COMOUTPUT and LOGOUT, are documented elsewhere in this
book. Muu-comrnands for more advanced operations are documented in the PRIMOS
Commands Reference Guide and the Programmer's Guide to BIND and EPFs.

TABLE 12-1
Useful Mini-commands

C o m m a n d  A c t i m

L I S T _ L I M I T S  D e t e r m i n e s  y o u r  c o m m a n d  e n v i r o n m e n t  l i m i t s

R D Y  - L O N G  M o n i t o r s  c o m m a n d  l e v e l

R E L E A S E _ L E V E L  R e l e a s e s  u n n e e d e d  c o m m a n d  l e v e l s

rNITIALIZE_COMMAND_ENVIRONMENT  Reinitializes  command  environment

L I S T _ E P F  D e t e r m i n e s  t h e  s t a t u s  o f  E P F s

LIST_MINI_COMMANDS  Determines  which  commands  are  available

RDY  -LONG  and  RELEASE_LEVEL:  RDY  -LONG  and  RELEASE_LEVEL  are  useful
whenever you type | ctri | [p], even if you are not using an EPF. Whenever your command
level is greater than one, PRIMOS displays your command level as the last element of the
long  prompt.  Thus,  invoking  long  prompts  with  RDY  -LONG  is  a  convenient  way  to
monitor your current command level as you work.

For example,

OK, RDY -LONG
OK  17:26:38  3.166  2.236

QUIT.
OK  17:26:42  0.045  0.190  level  2

Pressing  |  Ctrl  |  \T\  moves  you  up  one  command  level.  Using  the  RELEASEJLEVEL
command moves you down one command level:

OK, RDY -LONG
OK  17:26:38  3.166  2.236
I Ctri | QfJ
QUIT.
OK  17:26:42  0.045  0.190  level  2
I Ctrl | QfJ
QUIT.
OK  17:26:44  0.033  0.000  level  3
L__D E
QUIT.

Fifth  Edition  12-9



PRIMOS User's Guide

OK  17 :26 :45  0 .036  0 .000  leve l  4
L____ E
QUIT.
Now  at  command  level  5.  To  release  use  RLS.  (listen.)
OK  17:26:48  0.057  0.000  level  5
RLS
OK  17:26:54  0.039  0.000  level  4
RLS
OK  17:26:58  0.045  0.000  level  3
RLS
OK  17:27:01  0.039  0.000  level  2
RLS
OK  17:27:04  0.042  0.000

By default, RELEASEJJEVEL moves you down one command level. But when you specify
the -ALL option, RELEASE_LEVEL brings you back to command level 1, regardless of the
level from which you start:

Ctri

( l i s t e n _ )
QUIT.
Now  at  command  level  5.  To  release  use  RLS.
OK  17:27:30  0.054  0.000  level  5
RLS  -ALL
OK  17:27:45  0.078  0.151

As the above examples show, PRIMOS prompts you to use the RELEASE_LEVEL
command when you reach command level 5. PRIMOS prompts you again to use
RELEASE_LEVEL after every additional five levels. If you obey the system's prompts and
monitor your current command level with RDY -LONG, you should never reach mini-
command level. If you do reach mini-command level, the easiest way to escape is to use
RELEASE_LEVEL -ALL.
Bear in mind, however, that if you interrupt a program with | ctri [ \±\, and then use
RELEASE_LEVEL, you cannot use the START command to restart the program from the
point of interruption. Whenever you release a command level, PREMOS no longer maintains
the information necessary to restart the program invoked at that level. If you use
RELEASEJLEVEL -ALL, you can't restart any of the suspended programs.

INITIALIZE_COMMAND_ENVIRONMENT: The most drastic way to escape from mini-
command level is to use INITIALIZE_COMMAND_ENVERONMENT. Its effect is similar
to logging out and then logging in again. Use this command only if RELEASEJLEVEL
-ALL fails to free you from mini-command level.
EMTIALIZE_COMMAND_ENVERONMENT performs the following actions:

• Closes all open files, including any open COMOUTPUT files
• Deallocates all your private dynamic and static segments
• Resets your command environment to an initial state
• Resets erase and kill characters and other terminal characteristics to system defaults

12-10  Fifth  Edition



Running Programs Interactively

• Executes your login file

After you execute this command, the following conditions exist:

• You are attached to your initial attach point.
• You are unable to restart any suspended or active EPFs because all EPFs have been

unmapped from your address space.
• Any COMO file recording your terminal session has been terminated.

L,S7rEuF: LIST-EPF disPlays information about EPFs available to you. It is especiallyuseful when you have escaped from mini-command level and want to find out if an EPF can
still be restarted.
The format of LIST_EPF is

LIST_EPF [EPFname-1 [... EPFname-8]] [options]

If you specify LIST_EPF without arguments or options, PREMOS displays information about
the EPFs currendy mapped to your address space. An EPF is mapped if it has been allocated
room m your memory space. When you invoke an EPF for the first time during a terminal
session, PREMOS maps it to your memory space. It remains mapped for some time during the
terminal session so that it can be reinvoked rapidly.
You can specify up to eight EPF names for a display of information on specific EPFs. You
can also use wildcards to select several EPFs with similar names. If you specify EPF names,
you need only supply the objectnames, and you can omit the .RUN suffix.

Note
An EPF is unmapped if it is available in your file system, but is not mapped to your memory
space. You can specify the -NOT_MAPPED option for a listing of EPFs not mapped to your
address space. In this case you need to specify pathnames for EPFs not in your current directory.

LISTJ5PF lists program EPFs and library EPFs separately. Program EPFs are programs that
you can invoke from the command tine, including many PRIMOS commands. (Library EPFs
contain routines that are called by other programs.) You can examine the status of your
program EPFs to determine whether they can be restarted.
The status of a mapped EPF can be either not active or active. A program EPF is not active
when it has been invoked and tun successfully to conclusion. It remains mapped to your
address space so that it can be quickly reinvoked and run from the beginning. A program
EPF is active when it has been invoked and then suspended. You can often restart an active
EPF from the point at which it stopped using the START command.
The following example shows the LISTJEPF display after you have invoked the programs
DEGREES.RUN, CERCLE.RUN, and TEST.RUN. You have let CERCLE.RUN and
TEST.RUN run to completion, but you have interrupted the execution of DEGREES RUN
With | Ctrl I |~p].

OK,  LIST  EPF

Fifth  Edition  12-11



PRIMOS User's Guide

1  Process-Class  Library  EPF.

(active)  <SYS001>LIBRARIES*>SYSTEM_LIBRARY.RUN

2  Program-Class  Library  EPFs.

(not  active)  <SYS001>LIBRARIES*>APPLICATION_LIBRARY.RUN
(active)  <SYS001>LIBRARIES*>FORTRAN_IO_LIBRARY.RUN

3  Program  EPFs.

(not  active)  <DISK01>USER>PROGRAMS>CIRCLE.RUN
(active)  <DISK01>USER>PROGRAMS>DEGREES.RUN
(not  active)  <DISK01>USER>PROGRAMS>TEST.RUN

OK,

The  display  shows  DEGREES.RUN  as  active.  You  may  be  able  to  restart
DEGREES.RUN with the START command.

Notes
If you have more than one active EPF, the LIST_EPF display does not tell you in what order the
EPFs were suspended or will be restarted by successive START commands.
When you use RELEASEJLEVEL to release a command level, any program EPF associated
with mat level is unmapped and no longer appears in the listing of mapped EPFs.

LIST_MINI_COMMANDS: If you forget what commands you can use at mini-command
level, use LIST_MLNI_COMMANDS to display them. The command's format is

LIST_MINI_COMMANDS  [commandjnatch]

The optional argument commandjnatch is a character string, possibly containing wildcards,
that is used as a pattern match for the commands allowed at mini-command level. If you omit
this argument, the names of all the commands allowed at mini-command level are listed
alphabetically.
The following example shows the display you get when you specify LIST@@ as a command
match argument:

OK, LIST_MINI_COMMANDS LIST@@
Abbrev  Full  name Abbrev Full  name

L E  L I S T _ E P F
LMC  LIST_MINI_COMMANDS

OK,

LL
LS

LIST_LIMITS
LIST SEGMEN1

12-12  Fifth  Edition



Debugging  Programs

Most programs don't work as expected the first time you run them. Developing programs
often requires repeated testing and modification of the source code. To make this process
easier, Prime offers a Source Level Debugger (DBG) as a separately priced product.
This chapter gives a brief working introduction to DBG. It covers the following topics:

• DBG code requirements
• The features of DBG
• Compiling and linking programs for debugging with DBG
• Invoking and terminating DBG
• Basic DBG subcommands to examine source code, start and stop execution, and modifv

d a t a  '
• A sample debugging session

DBG Code Requirements
DBG lets you debug programs written in six Prime supported high-level languages:

•  C
• FORTRAN IV (V mode only)
• FORTRAN 77
• Pascal
•  PL/I
• RPG II (V Mode)

As the list above suggests, you can use DBG to debug programs compiled in 64V or 321
mode only. You cannot use DBG with R-mode programs.

DBG debugs both EPFs and static V-mode and I-mode code (.SEG runfiles) in the same way

rYou  create  and  edit  your  program  with  one  of  the  Prime  text  editors,  compile  it  with  the-DEBUG option, link it as usual, then execute and test it interactively under the control of
DBG.

Fifth  Edition  13-1



PRIMOS User's Guide

The Features of DBG
DBG lets you control, monitor, and manipulate the execution of your program. DBG's
features are categorized as follows:

• Program control
• Data manipulation
• Tracing
• Miscellaneous

DBG is an interactive program. You carry out operations by giving DBG subcommands, and
DBG shows the results on the screen. In the following sections, each feature is introduced
along with the DBG subcommand that implements it.

Program Control Features
Program control features let you use DBG to control the execution of your program. For
example, you can start or restart execution, suspend execution, execute one statement at a
time, and call any procedure, function, or subroutine. Use these features to discover where
and why your program failed.
Here is a partial list of DBG's program control features and related subcommands:

• Restarting the program. At any time during your debugging session, you can begin
execution of the program being debugged, no matter where execution is suspended
(RESTART subcommand).

• Setting breakpoints. You can suspend your program's execution at any executable
statement or at any entry to or exit from a procedure, function, or subroutine
(BREAKPOINT subcommand).

• Using breakpoint action lists. You can specify that one or more debugger commands be
executed each time a breakpoint occurs (BREAKPOENT subcommand).

• Using conditional action lists. You can specify that a breakpoint action list be executed
only if a given condition is true (BREAKPOINT and EF subcommands).

• Setting conditional breakpoints. You can specify that a breakpoint occur only if a given
condition is true (BREAKPOINT subcommand).

• Continuing program execution. You can resume program execution after execution has
been suspended (CONTINUE subcommand).

• Single stepping. You can execute one or more statements at a time; step across, into,
and out of procedures, functions, or subroutines (STEP, STEPEN, EN, and OUT
subcommands).

• Displaying breakpoints and tracepoints. You can display one or more breakpoints or
tracepoints (LIST and LISTALL subcommands).

• Deleting breakpoints and tracepoints. You can delete one or more breakpoints or
tracepoints (CLEAR and CLEARALL subcommands).

• Transferring control. You can transfer the position at which execution is to resume from _
one statement in your program to another (GOTO subcommand).

13-2  Fifth  Edition



Debugging Programs

# aC  ̂procedures, functions, and subroutines. From DBG command level, you can caU

LCS)  Ctl0n'  °r  SUbr°Utine'  SUPPlying  ^ument  Usts  if  neeS  (CAE?

Date Manipulation Features
Another important part of debugging is the ability to examine, evaluate, and modify
expressions Whenever execution is suspended, you can examine and modify the values of
variables and expressions and examine their data types.
Here is a partial list of DBG's data manipulation features and related subcommands:

• Examining variables. DBG can display the value of any scalar, array, or structured
variable in different, selectable data formats (: subcommand).

• Evaluating expressions. You can evaluate any expression allowed by any source
language (: subcommand).

• Assigning values. You can modify the value of a variable (LET subcommand).
• Examining data types. You can examine the data type of a variable or expression

(TYPE subcommand).
• Examining the values of arguments. You can examine the values of arguments passed

to procedures, functions, or subroutines (ARGUMENTS subcommand).
• Using built-in functions. You can use any built-in function supported by the source

language to help evaluate a variable or an expression.

Tracing Features
Tracing features let you trace the progress of your program's execution from beginning to
end. For example, you can have trace messages displayed at strategic points during program
execution, and you can trace the value of a variable as it changes throughout program
execution. Here is a partial list of DBG's tracing features and related subcommands:

• Setting tracepoints. You can specify that a trace message be displayed at the execution
of a specified statement or at the entry to or exit from a procedure, function or
subroutine (TRACEPOENT subcommand).

• Tracing values. You can specify that a message be displayed whenever the value of a
specified variable changes during execution. This message tells you the old value, the
new value, and the location in your program where the change was detected (WATCH
VTRACE, UNWATCH, and WATCHLIST subcommands).

• Tracing statements. You can specify that a trace message be displayed prior to the
execution of each statement and/or each labeled statement (STRACE subcommand).

• Tracing at entries and exits. You can specify that a message be displayed each time any
procedure, function, or subroutine is called or returns (ETRACE subcommand).

• Tracing the currendy active program blocks. Throughout your program's execution,
DBG can displaya list of the currendy active program block calls by displaying the
call/return stack (TRACEBACK subcommand).

Fifth  Edition  13-3



PRIMOS User's Guide

Miscellaneous Features
Here is a partial list of DBG's miscellaneous features and related subcommands:

. Examining the source file. You can look at, but not change, your source files while
debugging (SOURCE subcommand).

• Creating DBG command macros. You can create a macro to take the place of one or
more DBG subcommands (MACRO and MACROLIST subcommands).

• Saving breakpoints, tracepoints, and macros. You can save all of your breakpoints,
tracepoints, and macros in PRIMOS files, then use them agam m future debugging
sessions (SAVESTATE and LOADSTATE subcommands).

• Getting help. You can ask DBG for help in understanding subcommand syntax
definitions (HELP subcommand).

More Information on DBG
This chapter offers an introduction to a few basic subcommands and techniques for
debugging programs with DBG. To learn more about using DBG, consult the Source Level
Debugger User's Guide. For a summary listing of DBG subcommands, see the Loading and
Debugging Companion.
In addition, users with a knowledge of assembly language can use the Prime machine-level
debuggers, PSD, VPSD, and ISPD. VPSD can be invoked from DBG to debug V-mode
programs written in any language. PSD debugs R-mode programs and cannot be invoked
from DBG. The Assembly Language Programmer's Guide contains a full reference text for
these debuggers. The Loading and Debugging Companion contains a summary list of their
subcommands.

Compiling and Linking the Program
To use DBG, you must first compile your code in either V or I mode using the compiler's
-DEBUG option. For example, suppose that your current directory contains a FORTRAN IV
program called MYPROGRAM.FTN. To debug MYPROGRAM with DBG, you must first
compile the program using the -DEBUG option, as in the following example:

OK, FTN MYPROGRAM -DEBUG

Once you have successfully debugged your program, recompile it without the -DEBUG
option in order to save file space. Compilation with the -DEBUG option produces object
files and runfiles substantially larger than those produced by compilation without the
-DEBUG option.

13-4  Fifth  Edition



Debugging Programs

Link the program normally, as in the following examples:

OK,  BIND
[BIND  Rev  22.0  Copyright  (C)  1987,  Prime  Computer,  Ine  ]
: LOAD MYPROGRAM
:  LIBRARY
BIND COMPLETE
:  FILE

OK, BIND -LOAD MYPROGRAM -LIBRARY
[BIND  Rev  22.0  Copyright  (C)  1987,  Prime  Computer,  Inc.]

BIND COMPLETE
OK,

Invoking and Terminating the Debugger
Invoke the debugger from PREMOS command level with the command

DBG pathname

where pathname is the name of the EPF or .SEG runfile to be debugged. If the program is in
the current directory, you can use the filename alone. DBG recognizes the .RUN and .SEG
runfile suffixes (in that order); you need not type them on the command line. For example, to
debug a program in the current directory called MYPROGRAM.RUN, enter

OK, DBG MYPROGRAM

DBG reads the program and symbol table for the EPF into memory and displays an
identification message. When the the debugger's prompt character, a right angle bracket (>)
appears at the left margin of the screen, DBG is ready to accept subcommands from the
terminal.

Ending a DBG session: To terminate the debugging session and return to PRIMOS
command level, give the DBG subcommand

>  QUIT

Examining the Source Code
During debugging, you often need to examine you program's source code. You do this with
the SOURCE subcommand. The format of the SOURCE subcommand is

SOURCE argument

Most SOURCE arguments are the same as ED subcommands. They have the same functions
as the corresponding ED subcommands used to locate and display text. (You cannot use

Fifth  Edition  13-5



PRIMOS User's Guide

SOURCE to modify your source code.) As with ED, SOURCE maintains and manipulates a
pointer to one line of your source code. For example, if you give DBG the command

>  SOURCE  POINT  4

DBG moves the source pointer to line 4 of your file and displays it on the screen, just as the
ED command POENT 4 does during an ED session. Table 13-1 lists those SOURCE
arguments that are taken from ED. For the other arguments to the SOURCE subcommand,
see the Source Level Debugger User's Guide.

TABLE 13-1
SOURCE Subcommand Arguments

Argument Function

TOP Positions  the  line  pointer  to  the  top  of  the  file

BOTTOM Positions the line pointer to the bottom of the file

BRIEF SOURCE doesn't display target lines of FEND, LOCATE, POENT, and
NEXT operations

VERIFY SOURCE displays target lines of FEND, LOCATE, POENT, and NEXT
operations

PRINT  Displays  line(s)

WHERE  Displays  the  current  line  number

POINT Positions the line pointer  to  a specific line

NEXT Moves  the  line  pointer  forward  or  backward

MODE Sets edit mode; the only modes implemented are NUMBER/NNUMBER

LOCATE Locates the line containing the specified text suing

FIND Locates the line with the specified text suing beginning in a specified
column

PSYMBOL Displays a list of character symbols

SYMBOL Sets the specified character symbol

13-6  Fifth  Edition



Debugging Programs

The fotiowing example shows output from the SOURCE subcommand.

> SOURCE PRINT 30
1 J  =  0
2 K  =  0
3 DO  30  I  = 1,10
4 J  =  J  +  1
5 K  =  K  +  1
6 CALL TEST (J,K)
7 WRITE  (1,20)  J,K
8 :  20 FORMAT (215)
9 :  30 CONTINUE

10 CALL  EXIT
11 END
12
13
14 SUBROUTINE TEST  (J,K)
15 10 J  =  J  +  1
16: 20 K  =  K  +  1
17: IF  (J  .EQ. 5)  GO TO 100
18: IF  (J  .EQ. 6)  GO TO 110
19: 100 IF  (K  .EQ. 10)  GO TO 200
20: 110 IF  (K  .EQ. 20)  GO  TO  210
21: GO TO 20
22: 200 J  =  J  +  K
23: GO TO 300
24: 210 J  =  K
25: 300 RETURN
26: END

BOTTOM

SOURCE Line Numbers
SOURCE displays your source code with tine numbers. As the previous example shows,
these numbers may not correspond to any statement numbers included in your program.'
Many DBG subcommands take arguments that indicate a line of source code. You can use
the tine numbers displayed by the SOURCE subcommand as arguments to such DBG
subcommands.

Note
The discussion in this chapter deals with programs that consist of a single source file When a
program source consists of several files, such as a main program and separately compiled
subroutines, SOURCE treats each source file separately. When you enter DBG, the file listed by
SOURCE is the one containing the main program block. As you debug the program stopping
execuuon at different points, the file listed by SOURCE is generally the one that includes the
program block where execution stopped. For detailed information about how the current source
tile is determined, see the Source Level Debugger User's Guide.

Fifth  Edition  13-7



PRIMOS User's Guide

Starting Program Execution
After invoking DBG, use the RESTART subcommand to start program execution at the
beginning (main entry point) of the main procedure. This subcommand also restarts the
program from the beginning at any time during the debugging session. To continue from a
point where the program has been stopped without going back to the beginning, use the
CONTINUE subcommand.

Note
The variables initialized by a FORTRAN DATA statement or PL/I ENTTIAL clause are not
reinitialized if RESTART is given after execution has begun.

When a program is executed under DBG, the debugger maintains control throughout
execution. When the program stops or is suspended, you are returned to DBG command level
and receive the DBG prompt (>), indicating that DBG is ready to receive further
subcommands.

Stopping Execution
The BREAKPOINT and STEP subcommands let you interrupt program execution at a
specific place. Such interruption may be very useful for examining program data.
For example, suppose that a subroutine is suspected of incorrectiy handling a variable.
Setting breakpoints at the entry to the subroutine and just before returning from the
subroutine permits examination of the variable both before and after the subroutine has acted
on it.
On the other hand, with a complicated subroutine that is branching incorrectiy, it might be
useful to stop at the beginning of the routine and step through it one statement at a time until
suspicious behavior starts to occur.

Breakpointing
A breakpoint stops a program when it reaches a specific location. The BREAKPOINT
subcommand sets new breakpoints and modifies existing ones. The format is

BREAKPOINT breakpointJdentifier

where breakpoint Jdentif ier identifies the executable statement after which the breakpoint is
to be set.
DBG allows you to use a variety of breakpoint identifiers, but the most straightforward
method is to use a source line number from the current source file listing generated by the
SOURCE command. For example, when debugging the program listed in the previous
example, you could set a breakpoint at the line

30 0 RETURN

13-8  Fifth  Edition



Debugging Programs

with the subcommand

>  BREAKPOINT  25

If you execute a program after setting breakpoints, execution stops immediately after it
reaches the first breakpoint. For example, if you now give the command

>  RESTART

DBG executes your program until it reaches line 25 of the source code (statement 300 of
your program) and then stops and displays the message

****breakpointed  at  $MAIN\25  ($300)

Note
SMAIN is a label that refers to the program block in which the breakpoint was set In this case
this is the mam program. In general, with programs that consist of a single file, if you use source
file line numbers as breakpoint identifiers, you need not concern youself with program block
mS™?^ °^S' ^ "^ have t0 Specify a block label wnen y°u Sive subcommands likeBKbAKPOINT that take location identifier arguments. For more information, consult the
discussions of environments, location identifiers, and breakpoints, in the Source Level Debugger
User's Guide. $ 3 0 0 refers to the FORTRAN statement label of the breakpoint.

To continue execution from this point, use the CONTINUE subcommand.

Clearing  Breakpoints:  The  CLEAR  subcommand  clears  a  single  breakpoint  For
example,

>  CLEAR  25

clears the breakpoint set in the previous example. CLEARALL clears all breakpoints in the
program block that was executing when the program stopped.

Listing Breakpoints: The LIST subcommand displays the attributes of one breakpoint,
and LISTALL displays the attributes of all breakpoints in the program block that was
executing when the program stopped.

Stepping
The STEP subcommand stops program execution after a given number of statements The
format is

STEP [value]

where value is the number of statements to be executed before execution stops If no value is
specified, STEP executes one statement. Figure 13-2 shows the use of STEP, along with the
BREAKPOINT and : (evaluate) subcommands to examine a routine in detail.

Fifth  Edition  13-9



PRIMOS User's Guide

Examining and Modifying Data

The: (evaluate) Subcommand
When you breakpoint a program or step through it, you normally want to be able to examine
the values of certain variables at each point. You use the : (evaluate) subcommand to
examine the current value of a program variable. The use of the evaluate subcommand is
illustrated in the following example:

> BREAKPOINT 15
> CONTINUE

3 2  2 0

****  breakpointed  at  TEST\15  ($10)
>  :  J
J  =  33
>  :  K
K  =  21
> STEP

****  "step"  completion  at  TEST\16  ($20)
>  :  J
J  =  34
>  :  K
K  =  21
> STEP

****  "step"  completion  at  TEST\17  ($20+1)
>  :  J
J  =  34
>  :  K
K  =  22

You can also use the WATCH subcommand to keep track of variable values continuously as
the program executes. The DBG example at the end of this chapter shows how to use the
WATCH subcommand.

The LET Subcommand
You may also want to test new values of variables as you execute the program. Use the LET
subcommand to set the value of a variable. The format is

LET variable = expression

where variable is the name of a program variable and expression is any legal expression in
the language of the program being debugged. The expression must evaluate to a value
compatible with the type of the variable.

13-10  Fifth  Edition



Debugging Programs

For example,

>  LET  J  =  10

Note

A Sample Debugging Session

fomSnt1^8 un<fcbu«-ed F0RTRAN 77 program. Source tine numbers are added

l
2
3
4
5
6
7
8
9

10
11
12
13
14

C  Total  the  values  of  all  elements
C  of  a  five-element  array.
C

INTEGER*2  ARRAY(5),  TOTAL
DATA  ARRAY/9,12,3,17,201/
TOTAL=0
DO  100  J=l,4
TOTAL=TOTAL+ARRAY(J)
I = J

100  CONTINUE
WRITE(1,200)  TOTAL

200  FORMAT('THE  TOTAL  OF  ARRAY  =  ',14)
STOP
END

Assuming that your current directory contains this program in a file called TOTAL FTN
c o m p d e  i t  a s  f o l l o w s :  '

OK, F7 7 TOTAL -DEBUG
[F77  Rev.  22.0  Copyright  (c)  1987,  Prime  Computer,  Ine  ]
0000  ERRORS  [<.MAIN.>  F77  Rev.  20.2]
OK,

The -DEBUG option informs the F77 compiler that the program to be compiled will be
debugged later with DBG.
The procedure for linking the program is identical to that used without DBG, namely

OK,  BIND
[BIND  Rev  22.0  Copyright  (C)  1987,  Prime  Computer,  Ine  ]
:  LOAD TOTAL
:  LIBRARY
BIND COMPLETE
:  FILE
OK,

Fifth  Edition  13-11



PRIMOS User's Guide

REND saves the EPF TOTAL.RUN in your current directory. Your program has now been
Sl^anJftS  without  errors.  Edition  succeeds,  but  produces  an  output  ton.
Sy incorrect. The total value of the array elements is less than the value of the last
element alone:

OK, RESUME TOTAL
THE  TOTAL  OF  ARRAY  =  41

****  STOP
OK,

Now you summon DBG:

OK, DBG TOTAL

**Dbg**  revis ion  22.0  (13-December-1988)

>

To see if the elements of the array were assigned correcdy, place a breakpoint on source line
7 just before the DO loop. Enter

>  BREAKPOINT  7
>

This breakpoint subcommand causes DBG to regain control immediately prior to the
execution of the statement on source line 7. Begin program execution with the RESTART
subcommand. The program executes until the occurrence of the breakpoint. The mteraction
looks like this:

> RESTART

****  breakpointed  at  $MAIN\7
>

The breakpoint message means that DBG has encountered the breakpoint you set on
statement number 7 in the FORTRAN main program. The prompt character indicates that
DBG is once again at command level awaiting a subcommand.
If you precede any variable name or expression with a colon (:) or a space, the value of the
variable or the resultant value of the expression is displayed on your screen. Now check the
values of the array elements.

>  :  ARRAY
ARRAY(1)  =  9
ARRAY(2)  =  12
ARRAY(3)  =  3
ARRAY(4)  =  17
ARRAY (5) -= 201
>

13-12  Fifth  Edition



Debugging Programs

You find that the values were assigned to the array correctly. Because the program is so

TtZTJT rTCK, lUbCOmmand t0 ̂  Ae » Values of "bLand TOTAL and see where and how new values are assigned throughout execution (When
you specify two or more variables to WATCH, the variables must be separated bjcomma!)
Use the CLEAR subcommand to delete the breakpoint set previously on source line 7 and set
a new breakpoint on source line 11 to suspend execution at the exit of the DO loop after 5
values have been assigned. Now restart the program from the beginning:

>  WATCH  J,  TOTAL
> CLEAR 7
> BREAKPOINT 11
> RESTART
The  value  of  $MAIN\j  has  been  changed  at  $MAIN\8

from  0
t o  1

The  value  of  $MAIN\TOTAL  has  been  changed  at  $MAIN\9
from  0
t o  9

The  value  of  $MAIN\J  has  been  changed  at  $MAIN\8
from  1
t o  2

The  value  of  $MAIN\TOTAL  has  been  changed  at  $MAIN\9
from  9
t o  2 1

The  value  of  $MAIN\J  has  been  changed  at  $MAIN\8
from  2
t o  3

The  value  of  $MAIN\TOTAL  has  been  changed  at  $MAIN\9
from  21
t o  2 4

The  value  of  $MAIN\J  has  been  changed  at  $MAIN\8
from  3
t o  4

The  value  of  $MAIN\TOTAL  has  been  changed  at  $MAIN\9
from 2 4
t o  4 1

****  breakpointed  at  $MAIN\11  ($100+1)
>

In the breakpoint message, $100+1 identifies the statement as the one following FORTRAN
statement label 100.

_f ARRAWSv" ̂  Pr0b!r, The 3rTay indCX ValUe °f 5 iS never *««&** t0 J' ** the valueof ARRAY(5) is never added to TOTAL. Using the SOURCE subcommand, look at the DO
loop index on source line 7; a 4 was assigned as the maximum iteration instead of a 5 Wim
the QUIT subcommand, exit DBG and return to PRIMOS command level.

Fifth  Edition  13-13



PRIMOS User's Guide

> SOURCE POINT 7
7 :  D O  1 0 0  J = l , 4

>  QUIT

After correcting, recompiling, and relinking the program, you find that it works:

OK, F7 7 TOTAL -DEBUG
[F77  Rev.  20.2  Copyright  (c)  1986,  Prime  Computer,  Inc.]
0000  ERRORS  [<.MAIN.>  F77  Rev.  20.2]
OK,  BIND  -LOAD  TOTAL  -LIBRARY
[BIND  rev  22.0]
BIND COMPLETE
OK, RESUME TOTAL
THE  TOTAL OF  ARRAY =  242

****  STOP
OK,

"1
13-14  Fifth  Edition



Part III: PRIMOS System Facilities



Command Files

PREMOS lets you replace terminal input and output with input and output from special files
called command files.

• You can tell PRIMOS to save all terminal output in a command output file.
• You can save a series of PRIMOS command lines in a command input file You can

then have PREMOS execute the commands in the file just as if you were typing them at
t h e  t e r m i n a l .  r  "

Command Output Files

r

You can use a command output file (also called a COMO file) to save everything that
appears on your terminal screen during a terminal session. A command output file contains
everything that you type that is echoed to the screen and all terminal output from the system.
You use a command output file to make a record of a terminal session. After you close the
me, you can display its contents at your terminal with the SLIST command. When you do
this, you see your terminal session reproduced on the screen, including both your input and
the system's responses.

Note
If you use ECL, only the command lines actually submitted to PRIMOS appear in COMO files
by default. ECL commands, dialog, and other input are not included in COMO files You can
Lforrrfatim8 * ^ ^ ECL -NO-CLEAN-COM0 option. See Chapter 7 'for more

The command output file is an ordinary text file. This means you can SPOOL it to a printer
or edit it with one of the Prime supported text editors.
Command output files are especially useful when you have problems during a terminal
session. You can use a command output file to save input and output at the point where the
problem occurred, so that you can study it or show it to someone else

Fifth  Edition  14-1



PRIMOS User's Guide

Creating a Command Output File
You create a command output file by issuing the COMOUTPUT command. The command's
format is

c»moutput {rPrr["p'te!}
pathname identifies the command output file. If the file is in your current directory, just use
the filename. The standard filename suffix for command output files is .COMO. The
COMOUTPUT command does not supply the .COMO suffix. If you want to use the .COMO
suffix, you must supply it when you give pathname.
If pathname does not exist, COMOUTPUT creates it. If pathname already exists, the file is
overwritten, unless you specify the -CONTINUE option. The -CONTENUE option appends
new terminal output to the end of the old file.
After you give the COMOUTPUT command, PRIMOS begins to send all your terminal
output to the specified file. Output continues to appear on your screen, too. (If you want
output to go to the command output file only, use the -NTTY option.)
For example,

OK, COMOUTPUT TEST.COMO

opens the file TEST.COMO and begins to send subsequent terminal output to it as well as to
the terminal screen.
If TEST.COMO already exists when you issue the COMOUTPUT command, its previous
contents are overwritten. If you want to append terminal output to the old file instead of
overwriting it, use the -CONTINUE option:

OK, COMOUTPUT TEST.COMO -CONTINTUE

Closing the Command Output File
You stop recording your terminal session by issuing the COMOUTPUT command with the
-END option. This option causes PREMOS to stop sending terminal output to the command
output file and closes the file. The file contains all terminal dialog beginning after the
original COMOUTPUT command up to and including the COMOUTPUT -END command.
A COMO file may also be closed with the PRIMOS command

CLOSE pathname

where pathname identifies the open command output file.
Note

The command CLOSE -ALL does not close a command output file; it closes all files except a
command output file.

14-2  Fifth  Edition



Command Files

An  open  command  output  file  is  also  closed  when  you  log  out  or  issue  the
INITIALIZE_COMMAND_ENVERONMENT command.
Use the STATUS UNETS command to find out if you have an open command output file
Command output files are always assigned to a file-unit called COMO. For example,

OK, COMOUTPUT TEST.COMO
OK,  STATUS  UNITS

User  FRED

F i l e  F i l e Open F i l e
U n i t  P o s i t i o n Mode Type RWlock
COMO  000000030 DAM NR-1W

S01

Treename
<DISK01>FRED>TEST.COMO

OK,

shows a COMO file with the pathname <DISK01>FRED>TEST.COMO.

You can have only one command output file open at a given time. If you open a second
command output file before closing the first one, the second COMOUTPUT command
automatically closes the first file before it opens the second.

COMOUTPUT Options
Use the following options either when you first open the command output file or later during
the terminal session, by issuing further COMOUTPUT commands.

O p t i o n  D e s c r i p t i o n
-NTTY Turns off terminal output. System output is sent to the command output file,

but it does not appear on your screen. Your terminal input is still echoed
unless you are using ECL.

-TTY  Turns  on  terminal  output  (default).
-PAUSE Stops sending output to the command file, but does not close the file. You

must subsequendy issue a COMOUTPUT -CONTINUE or -END command.
-CONTINUE Appends terminal output to a command output file. If the file is not open,

pathname must precede this option. If you have suspended output to a com
mand output file with the -PAUSE option, you don't need the pathname.
Output is appended to the already open file.

~END StoPS sending output to the command file and closes the file. This is the rec
ommended method of closing a COMOUTPUT file.

Note
Error messages are written to the output file and displayed at the terminal, regardless of the
terminal option selected. Output sent to the terminal from other users, such as messages from the
supervisor terminal, is displayed at the terminal, but not written to the output file.

Fifth  Edition  14-3



PRIMOS User's Guide

Dating Command Output Files
You may find it useful to include a date and time stamp in your command output files. Use
the PREMOS DATE command. The DATE command displays the system date and time at
your terminal:

OK,  DATE
13  Dec  88  14:53:28  Thursday
OK,

If you issue the DATE command while a command output file is open, the date and time
information is also included in the file. For example, the sequence of commands

COMO TESTI.COMO
DATE

COMO -END

creates a file, TEST1.COMO. The first line of this file is the DATE command; the next line
is the time and date of the session.

OK, DATE
31  Dec  87  11:38:28  Thursday

OK, COMO -END

Command Input Files
A command input file (also called a COMI file) is a text file containing a series of ((^
command lines. Each line of the file represents one line of terminal input. The file can
include any legal PRIMOS command lines as well as subcommands for any subsystem
invoked by the command input file. Lines can also include dialog responses that you would
type at the terminal during an interactive session.
You construct command input files with one of the Prime text editors. Command input files
are especially useful for repetitive processes, such as compiling and linking a series of
programs, building libraries, and mnning production jobs.
You execute command input files in three ways:

• Using the PRIMOS COMENPUT command
• As phantoms
• As Batch jobs

The COMENPUT command is introduced in this chapter. Phantom and Batch execution are
described in Chapter 16.

14-4  Fifth  Edition



Command Files

Ending the File
The last line of a command input file depends on how you intend to execute the file.

• When a command input file is to be executed from the terminal using the COMENPUT
command, the last line must be COMENPUT -END or COMENPUT -TTY. These
commands return control to the terminal.

• When a command input file is to be executed as a phantom (see Chapter 16) the last
lme must be the PRIMOS LOGOUT command.

• When a command input file is executed as a Batch job (see Chapter 16), there is no
special requirement for the last line.

Comments
You can insert comments in a command input file by using the following format:

/* text

where text is the text of your comment. When PRIMOS encounters /* in a command input
file, the command interpreter ignores the rest of the line. You can use comments to add
explanatory messages to your command input files. For example,

SLIST  BENCH.MAP  /*  PRINT  MAP  FILE

The COMINPUT Command
Use the COMENPUT command to execute a command input file as well as to control its
command flow.
The command's format is

COMINPUT ■[ Patnmme [file-unit] \\  o p t i o n  j

pathname specifies the command input file from which PRIMOS is to read input. If the file
is in your current directory, a filename is adequate.
The standard suffix for command input filenames is .COMI. However the COMENPUT
command does not recognize the .COMI suffix, so you must also include the suffix on the
command line when you type the pathname (or filename). For example,

OK, COMINPUT MYFILE.COMI

file-unit specifies the PRIMOS file-unit number, in octal, on which pathname is opened If
file-unit is omitted, file-unit 68 is used by default. File-unit numbers are only necessary for
nested or chained command input files. (See the section, Chaining Command Input Files for
an explanation of file-units.)
COMENPUT accepts either a pathname or an option, but not both, on a single command line.

Fifth  Edition  14-5



PRIMOS User's Guide

COMINPUT Options
After PREMOS begins to process a command input file, you can control the file's command
flow with the COMINPUT options listed below. You can use only one option at a time.
The -END -TTY, and -PAUSE options must be included in a command input file, not
issued from your terminal. Conversely, you use the -START option only at your terminal.
You can use the -CONTINUE option from your terminal or from within the file.
COMENPUT options are as follows:

Option
-TTY
-END
-PAUSE

-CONTINUE  [file-unit]

-START  [file-unit]

Description
Either switches the command input stream to the user terminal or
closes the COMI file. Use only within a command input file.
Switches the command input stream to the user terminal, but does
not close the command input file. Use only within a command input
file.
Returns control to the COMI file after a CO -PAUSE or an error.
file-unit, which is an octal number, must be specified if the file is
opened on a file-unit other than file-unit 6 (the default file-unit).
(File-units are discussed below in the section, Chaining Command
Input Files.)
Restarts processing of a command file after BREAK, I Ctrl | [pj, a
warm start of PRIMOS, or a subsystem error, file-unit, which is an
octal number, must be specified if the file is opened on a file-unit
other than file-unit 68. (the default file-unit). (File-units are discussed
below in the section, Chaining Command Input Files.) Use only on
the command line at your terminal.

A Sample Command Input File
The  following  command  input  file,  TEST.COMI,  compiles  and  links  the  program
TEST.FTN:

COMOUTPUT TEST.COMO
DATE
FTN SQUARES
BIND
LO SQUARES
L I
MAP FULL.MAP -FULL
MAP UN.MAP -UNDEFINED
FILE
DATE
COMOUTPUT -END
COMINPUT -END

/*  Begin  test  of  command  input  file
/*  Display  the  time  and  date
/*  Compile  the  program
/*  Link  the  program

/*  Command  file  test  completed

14-6  Fifth  Edition



Command Files

Execute the command input file with the command

OK, COMINPUT TEST.COMI

Execution of the command input file produces the following output file:

O K ,  D A T E  / *  D i S p i a y  t h e  t i m _  a n d  d a t e
12  Dec  88  15:54:40  Monday
O K ,  F T N  S Q U A R E S  / *  C o m p i l e  t h e  p r o g r a m
00  00  ERRORS  [<.MAIN.>FTN-REV22.0]
0000 ERRORS [<SQUARE>FTN-REV22.0]
0 K '  B I N D  / *  L i n k  t h e  p r o g r a m
[BIND  rev  22.0]
: LO SQUARES
:  LI

BIND COMPLETE
:  MAP  FULL.MAP  -FULL
: MAP UN.MAP -UNDEFINED
:  FILE
O K ,  D A T E  / *  c o m m a n d  fi l e  t e s t  c o m p l e t e d
12  Dec  88  15:54:44  Monday
OK, COMO -END

Errors
If the COMI file encounters an error from which it cannot recover, it returns control to the
terminal, leaving the command input file open. The user may type a correct version of the
line, and then resume input from the command file with the -CONTINUE option of the
COMENPUT command:

COMINPUT -CONTINUE [file-unit]

You need to specify file-unit only if you are continuing a command input file that you
opened on a file-unit other than the default file-unit.

Chaining Command Input Files
The -CONTINUE option of COMINPUT allows you to chain command files That is you
can have one command input file invoke another. When the second file finishes executing it
can return control to the first, which can then continue executing. When you do this you ha've
to take care to avoid file-unit conflicts.

File-units: Whenever PRIMOS opens a file, it assigns the file to a file-unit. You can think
of a file-unit as a channel through which all input to and output from the file take place
File-units are identified by octal numbers. You normally don't have to be concerned with
file-unite because most operations automatically assign files either to unused file-units or to
default file-units that are always set aside for them.

Fifth  Edition  14-7



PRIMOS User's Guide

Command input files are assigned to file-unit 68 by default. If you use one command input
file to invoke another, you must be sure that they are assigned to different file-units. If you
don't do this, both files are assigned to the default file-unit. When the second command input
file is assigned to the default file-unit, it replaces the first command input file. When this
happens, it is impossible to return to the first command input file when the second one
finishes executing.

You can avoid this problem when chaining command input files by assigning the chained
files to different file-units. You can assign command input files to any file-unit from 18 to
2008.
The following example illustrates the chaining of three command files and shows how file-
unit conflicts can be avoided. The command file FILE1.COMI contains the following
commands:

COMOUTPUT CHAIN.COMO
DATE
COMINPUT FILE2.COMI  7
CLOSE 7
COMOUTPUT -END
COMINPUT -TTY

Opens a file to record all output.
Displays the time and date.

Opens second COMI file on File-unit 78.
Closes second COMI file.

Closes the command output file.
Returns control to user terminal.

The command file FELE2.COMI contains these commands:

DATE
COMINPUT FILE3.COMI  10
CLOSE 10
COMINPUT  -CONTINUE

Displays the time and date again.
Opens third COMI file on File-unit I0B.

Closes third COMI file.
Returns control to the calling COMI file.

The command file FELE3.COMI contains the following:

DATE
COMINPUT -CONTINUE 7

Displays the time and date a third time.
Returns control to calling COMI file.

When you invoke the first command input file with the command

OK,  COMINPUT  FILEl.COMI

it displays the date and then calls on FILE2.COMI. FELE2.COMI then displays the date and
calls on FELE3.COMI. FILE3.COMI displays the date and returns control to FELE2.COMI.
FELE2.COMI finally returns control to FILEl.COMI.

The command output file that results looks like this:

OK, DATE
09  Nov  87  10:16:28  Monday
OK,  COMINPUT FILE2.COMI  7
OK, DATE
09  Nov  87  10:16:28  Monday
OK,  COMINPUT  FILE3.COMI  10

Displays the time and date.

Opens second COMI file on File-unit 78.
Displays the time and date again.

Opens third COMI file on File-unit 10B.

14-8  Fifth  Edition



Command Files

16:28  Monday
-CONTINUE 7

OK, DATE
0 9 Nov 87 10
OK, COMINPUT

CLOSE 10
COMINPUT -CONTINUE
CLOSE 7
COMOUTPUT -END

OK,
OK,
OK,
OK,

Displays the time and date a third time.

Returns  control  to  calling  COMI file.
Closes third COMI file.

Returns  control  to  the  first  COMI  file.
Closes second COMI file.

Close the command output file.

Closing Chained Command Input Files: When you chain command input files be

eX °thTCfm C°mmanilS * Cl0SC ^ CaUed fileS Up0n retuminS t0 «* ca^S files, usingeither the file-unit numbers (as in the example above) or filenames. To check for open file
units, use the STATUS UNITS command.
Do not use the command CLOSE -ALL within a command file because it closes the
command fde itself and displays the following error message:

End  of  file.  Cominput.  (Input  from  terminal.)

r
Fifth  Edition  14-9



The Basics of CPL

The PRIMOS Command Procedure Language (CPL), lets you write programs that carry out
sequences of PRIMOS commands and subcommands. An elementary CPL program may be a
simple sequence of PREMOS commands, much like a command input file. But CPL can also
give you much more sophisticated control over the execution of PRIMOS command
sequences. CPL is a high-level programming language that includes

• Control structures, such as loops and branches
• Variables
• Function calls
• Error handling and debugging facilities

This chapter provides a brief introduction to the basic features of CPL. The chapter assumes
that you have some familiarity with basic programming concepts, such as variables
branching, and the like. For a complete discussion, see the CPL User's Guide, which contains
information both for beginning and advanced programmers.

How Does CPL Work?
CPL programs are constructed with two kinds of statements: PRIMOS commands and CPL
directives. The PRIMOS commands specify the operations you want PRIMOS to carry out
CPL directives control the flow of the program, pass arguments to the PRIMOS commands'
set variable values, call subroutines, and handle errors.
CPL programs are carried out under the control of the CPL interpreter. The CPL interpreter
is a program that reads your CPL program and passes the commands along to PRIMOS for
execution. The CPL directives are instructions to the interpreter. As the interpreter reads your
program, it uses the directives to decide what commands and arguments to pass to PRIMOS
for execution.

Fifth  Edition  15-1



PRIMOS User's Guide

When it executes a program, the CPL interpreter first evaluates variables and function calls
and replaces them with their correct values. It then interprets and acts upon CPL directives.
Finally, it passes the resulting commands to PRIMOS for execunon.
Even a relatively simple CPL program can make many such decisions, so you can write CPL
programs that carry out PRIMOS command sequences in a highly flexible manner.

Creating and Executing CPL Programs
Use one of the PRIMOS supported text editors to write CPL programs. The format is simple;
you put one statement on each tine. You can use indentation if you want in order to make the
program easier to read.
You can add comments to a CPL program using the following format:

/* text

where text is your comment. Whenever the CPL interpreter encounters /*, it disregards the
rest of the line. You can use comments to add explanatory text that the CPL program does
not try to interpret as CPL statements.

The .CPL Suffix
When you save your program, you must use a filename with the .CPL suffix:

filename. CPL

For example, you can call a CPL program NOTEBOOK.CPL.

Invoking CPL Programs
CPL programs are not compiled or linked. You can execute them as soon as you finish
writing them. You mn CPL programs interactively with either the CPL command or the
RESUME command. The format is either

RESUME filename

or

CPhfilename

where filename is the name of your program. You don't need to give the .CPL suffix when
invoking the program as long as no similarly named files with the .RUN or .SAVE suffix
exist in the same directory.

15-2  Fifth  Edition



The Basics of CPL

Note

fo£n^7ti{sTnTderith°Ut  "  "^  ***  ^  inV°ke  ^S^  PRIM0S  se^hes  for  the

/i'/e/ia/rce.RUN
///e«ame.SAVE
filename.CPL
filename

For example, you can invoke NOTEBOOK.CPL using

OK,  RESUME  NOTEBOOK

or

OK,  CPL  NOTEBOOK

Z N'STEBOOKCPL116'1 N°TEB00KRUN or NOTEBOOK.SAVE exists in the same directory
You can also run CPL programs as phantoms or as Batch jobs. For details of phantom and Batch
execuUon, see Chapter 16.

Using PRIMOS Commands in CPL Programs
The simplest CPL programs are composed entirely of PRIMOS commands. For example you
can write a CPL program that runs two programs called SUM and SORT and then lists the
contents of the current directory, as follows:

RESUME  SUM  /*This  program  calculates  several  sums
RESUME  SORT  /*This  pr0gram  sorts  the  results
L D  / * C h e c k  t o  s e e  i f  o u t p u t  fi l e  e x i s t s

If you save this file as CALCULATE.CPL, you can then run it with the one of these
commands:

OK, RESUME CALCULATE

or

OK, CPL CALCULATE

When you run this program, PRIMOS first executes a program called SUM After SUM
terminates, PRIMOS then executes a program called SORT. Finally, PRIMOS executes the
LD command, listing the current directory's contents.

The interpreter ignores the comments (the text that begins with /*).

r
r Fifth  Edition  15-3



PRIMOS User's Guide

Which PRIMOS Commands Can You Use?
CPL files that consist entirely of PRIMOS commands can use the following commands:

• All compiler commands: CBL, F77, FTN, PMA, and so on.
• All commands that execute programs, such as RESUME, SEG, and BASICV.
. Any user commands that do not invoke a subsystem or initiate a dialog. For example,

ATTACH
LD
CREATE
COPY
DELETE
CNAME

• Commands that invoke interactive subsystems or user programs, if the you are going to
supply the data or subcommands from the terminal at runtime. For example,

ED
BIND
SEG
SORT

You can also have the CPL program supply data or subcommands to interactive subsystems ^
and programs. To do so, you use the CPL &DATA directive, explained in the section, Using
CPL With Subsystems.

What PRIMOS Commands Can't You Use?
Do not use COMENPUT, CLOSE -ALL, or DELSEG -ALL in a CPL program. Any of these
commands aborts execution of the program.

Using Variables in CPL Programs
CPL programs gain flexibility by using variables. Variables are character strings that can
stand for any number of values. A program that uses a variable first assigns a value to the
variable. Then, when the CPL interpreter processes any statement that contains the variable,
the assigned value is substituted for the variable.
Variable names can have a maximum of 32 characters. They may contain only the characters
A-Z, 0-9, underscore (_)> and dot (.). The CPL interpreter does not distinguish between
uppercase and lowercase letters.
CPL programs can assign values to variables in three ways:

• With the &ARGS directive
• With the &SETJVAR directive
• By referring to global variables

15-4  Fifth  Edition



77?e Basics of CPL

The names of variables defined with the &ARGS and &SET_VAR directives must begin
with a letter. For example,

ARTIST_NAME
B12

The names of global variables must begin with a dot. For example,

.DEPT_C0DE

Note
CPL variables are not stricdy typed. The CPL interpreter can treat any variable value as a
character string. The CPL interpreter can also treat certain character strings as integers or
boolean values. For more information, see the CPL User's Guide.

Using the &ARGS Directive
The simplest way to assign a value to a variable is to use the CPL &ARGS directive. The
&ARGS directive takes variable values from the command line when the CPL program is
invoked in much the same way that abbreviations take variable values from the command
line. (Abbreviations are discussed in Chapter 8.)

The format of the &ARGS directive is

&ARGS variable_name [;...variable_name]

where variable_name names a variable that is to take its value from the command line.

The following example shows how to use the &ARGS directive to get avariable's value from
the command line. The example program, called F7.CPL, compiles any F77 source code and
keeps a dated record in aCOMO file.

&ARGS FILENAME
COMO %FILENAME%.COMO
DATE
F7 7 %FILENAME% -DEBUG
COMO -E

In this example, the &ARGS directive defines one variable, FILENAME. When you invoke the
CPL program, you supply the value of FILENAME in the command line. For example,

OK, RESUME F7 JEFF

supplies the value JEFF for FILENAME. As the CPL program runs, the string JEFF is
substituted for each occurrence of %FILENAME% in the program. So,

COMO %FILENAME%.COMO

becomes

COMO JEFF.COMO

Fifth  Edition  15-5



PRIMOS User's Guide

and

F77  %FILENAME%  -DEBUG

becomes

F77 JEFF -DEBUG

Note the use of the percent signs (%). When the variable FILENAME is defined in the
&ARGS directive, the name appears without percent signs. When the variable value is used
by a program statement, such as COMO %FELENAME%.COMO, the name appears between
percent signs. As a general rule, when a variable is defined with CPL directives, the name
appears without percent signs. When a variable value is referenced (the variable's value is
used) by a program statement, the name appears between percent signs.

Note

When a variable reference is juxtaposed to another character string, with no blanks between
them (as in %FTLENAME%.COMO), the value of the variable is concatenated with the other
string (as in JEFF.COMO). Two or more variable references may also be concatenated. For
example, %FELENAME%%FILENAME% results in the string JEFFJEFF.

The value you supply in the command line that invokes the CPL program is called a
command line argument. In the above example, the argument is the string JEFF. You use
the &ARGS directive to pass command line arguments to CPL program variables.

Multiple Arguments: You can pass multiple arguments with the &ARGS directive. To do
so, you separate the variable names with semicolons. For example,

&ARGS FILENAME; COMPILER

Arguments are assigned according to their position in the command line that invokes the CPL
program. For example, you can write a more general CPL file, called COMPELE_ALL.CPL,
that can compile FTN, F77, or PL1 source files. It reads

&ARGS FILENAME; COMPILER
COMO % FILENAME %.COMO
DATE
%COMPILER% %FILENAME% -DEBUG
COMO -E

If you invoke this file by typing

OK, R COMPILE_ALL FRED FTN

the first argument, FRED, becomes the value of the first variable, FILENAME, in the
&ARGS line. The second argument, FTN, is assigned to the second variable, COMPILER.
The fourth line is then interpreted as

FTN  FRED  -DEBUG

15-6  Fifth  Edition



7?7e Basics of CPL

Omitted  Arguments
If an argument is omitted from the command line, the CPL interpreter sets its value to the
null string ("). The PREMOS command processor then removes the null string before
executing the command. In the above example, the command

OK,  R  COMPILE_ALL  TESTFILE

assigns the value TESTFILE to the variable FILENAME, and assigns the null string to the
variable COMPILER. Line four then becomes

TESTFILE  -DEBUG

In this case, PREMOS can't execute such a command, so it returns you to command level with
an error prompt.

Note
CPL offers several ways to deal with null arguments. These are explained in the CPL User's
Guide.

The &SET_ VAR Directive
Use the &SET_VAR directive to assign values to variables within a CPL program. The
&SET_VAR directive performs essentially the same function as the assignment operator in
many high-level programming languages.
The format of the &SET_VAR directive is

&SETJVAR name := value

For example,

&SET_VAR  A  :=  AMY

defines the variable A and gives it the value AMY.

value may also be an expression. For example,

&SET_VAR X =  10
&SET_VAR Y =  5
&SET_VAR Z o__  o  T *_y  %

These three directives define the variables X, Y, and Z. X has a value of 10, Fa value of 5
a n d  Z  a  v a l u e  o f  1 5 .  '

Note
In CPL programs, all operators must be separated from their operands by one or more spaces.

Fifth  Edition  15-7



PRIMOS User's Guide

Global Variables
CPL program statements can also reference global variables in an active global variable file.
For example, if an active global variable file contains

. P R O J E C T  M Y D I R > P A P E R W O R K > N O T E S

then the CPL program statement

SLIST  %.PROJECT%

is equivalent to

SLIST MYDIR>PAPERWORK>NOTES

You can activate a global variable file either from command level, before you run the CPL
program, or with a statement in the CPL program itself. However, if you run a CPL program
as a phantom or in the batch environment, you must activate the global variable file with a
DEFINE_GVAR statement in the CPL program itself.
For more information on global variables, see Chapter 8.

Decision Making (Branching) in CPL Programs
When a CPL program contains only PRIMOS commands (or PRIMOS commands plus
variables), command lines are executed in the same sequence in which they occur in the
program text. Sometimes you want to choose among alternative commands or alter the order
of execution depending on conditions. Several CPL directives let you control program flow
in this way.

The &IF Directive
Use the &EF directive to choose among courses of action depending on some condition. The
form of the &IF directive is

&D7 test &THEN statement

test is a logical test that can be answered TRUE or FALSE, statement is either a command or
a CPL directive.
test may be constructed using any of the operators listed in Table 15-1.

15-8  Fifth  Edition



77ie Basics of CPL

TABLE 15-1
Operators

Operator Condition

Arithmetic
+ Addition, unary plus
- Subtraction, unary minus
* Multiplication
1 Integer division (result is truncated to integer)
Relational
= Equal
< Less than
> Greater than
<- Less than or equal
>= Greater than or equal
A _ Not equal
Logical
& And
1 Or
A Not

tof may test variables, constants, functions or expressions against each other. For example,

&IF %A% = 10
&IF %A% < %B%
&IF %A% < %B% + %C%
&IF %A% + %B% = %D% + 30
&IF  [LENGTH  %A%]  <  100

Variable and constant.
Two variables.

Variable and expression.
Two expressions.

Function and constant.

Evaluation of expressions is discussed in the CPL User's Guide.

How the &IF Directive Works: When the CPL interpreter reads an &EF directive it
substitutes current values for any variable references, expressions, or function calls it finds
Then it tests to see whether test is true or false. If test is true, the interpreter executes the
command or directive that forms the &THEN statement.

r
r Fifth  Edition  15-9



PRIMOS User's Guide

For example, suppose you compile a program frequentiy, but only occasionally want to spool
the listing file. You can use the &EF directive to tell the CPL program whether or not to spool
the listing file. Here is a program to do it (called CNS.CPL):

&DEBUG &ECHO COM
/*This  program  compiles  and  optionally  spools
/*an  F77  program.
/*Give  the  argument  "SP"  to  spool  the  listing  file.

&ARGS FILENAME; SP
/*Open  the  COMOUTPUT  file  and  compile  the  program

COMO %FILENAME%.COMO
DATE
F77 %FILENAME% -L %FILENAME%.LIST -XREF

/*If  desired,  spool  i t .
&IF %SP% = SP &THEN SPOOL %FILENAME%.LIST -AT MS3
COMO -E

If you give the command

OK,  RESUME  CNS  JEFF  SP

then the test, SP = SP, is TRUE, and the listing file, JEFF.LIST, is spooled. If you give the
command

OK, RESUME CNS JEFF

the test is FALSE (the null string does not equal SP). In this case, the listing file is not
spooled. Instead, the CPL interpreter ignores the &THEN statement, and passes on to the
next line in the program (in this case, COMO -E).

The &ELSE Directive
The &EF directive may be used by itself, as in the CNS.CPL sample program above; or it
may be followed by the &ELSE directive. When used by itself, &EF tells the interpreter
either to execute or to ignore some statement. When the &EF and &ELSE directives are used
together, they tell the interpreter to choose between two courses of action.
The format of the paired directives is

&IF test &THEN statement-1
&ELSE statement-2

If test is true, statement-1 is executed. If test is false, statement-2 is executed. For example,
suppose you compile many FTN files and a few F77 files. You can write a program (called
COMPILE2.CPL) that looks like this:

&ARGS FILENAME; COMPILER
&IF %COMPILER% = F77 &THEN F77 %FILENAME% -DEBUG -321
&ELSE FTN %FILENAME%

~ "

15-10  Fifth  Edition



77?e Basics of CPL

If you invoke the program with

RESUME C0MPILE2 THISFILE F77

npm^L^T^ beC°meS ttue' and THISFILE ^ compiled by the F77 compiler inDEBUG and 321 modes. If you give any other value for the compiler argument, or if you
omit the argument altogether, THISFILE is compiled by the FTN compiler in default modes.

Nested  &IFs
&EF directives may be nested; either the &THEN or the &ELSE action of one &EF directive
may be another &IF directive. Nested &EF statements are discussed in the CPL User's Guide.

&DO GROUPS
In the examples above, the &THEN and &ELSE directives execute single commands These
directives may also execute groups of commands, by using the &DO and &END directives to
mark the beginning and end of each command group.
The format for &DO groups is as follows:

&DO
statement 1
statement 2

statement n
&END

You can use an &DO group in the following way:

&IF test &THEN &DO
first-group-of-statements
&END
&ELSE &DO
second-group-of-statements
&END

For example,

&ARGS MONTH
&IF  %MONTH%  =  DEC  &THEN  &D0

RESUME MONTHLY_REPORT
RESUME END_OF_YEAR_REPORT
RESUME  XMAS_LIST
SEND

■SELSE RESUME MONTHLY_REPORT

Fifth  Edition  15-11



PRIMOS User's Guide

Using Functions in CPL Programs
Like other high-level languages, CPL provides built-in functions to simplify frequendy made
tests and computations. Functions appear in CPL files in the form of function calls. In a
function call, the function name and any arguments are enclosed in square brackets:

[Function arg].

When a function call appears in a command or directive, the CPL interpreter performs the
required test or computation and substitutes the value produced. The function is said to
return this value.

The NULL function
One useful CPL functions is the NULL function:

[NULL %var%]

where var is any CPL variable.
The NULL function tests for a null character string and returns the character string TRUE, if
it finds one and the character string FALSE if it does not. Because the value of an omitted
argument is the null string, the NULL function can be used in &EF directives to test for an
omitted argument.
For example, you can use a test for a null argument to set the name of the directory listed
with the LD command in the following CPL statements:

&ARGS WHERE
IF [NULL %WHERE%] &THEN LD MY_DIR

&ELSE LD %WHERE%

If you specify a directory name in the command line when you invoke this CPL program, the
directory you specify is listed. If you don't specify a directory name in the command line,
MY_DER is listed.

The EXISTS Function
The EXISTS function determines

• Whether or not a file system object exists
• Whether it matches a specified type (file, directory, segment directory, or access

category)

The format of the function call is

[EXISTS pathname [type]]

pathname is the name of a file system object.

15-12  Fifth  Edition



The Basics of CPL

type is one of the following:

-ANY
-FILE
-DIRECTORY
-SEGMENT_DLRECTORY
-ACCESS_CATEGORY

If type is present, then the EXISTS function returns the value TRUE if pathname does exist
and is of the right type. It returns the value FALSE if pathname does not exist or if it is of
the wrong type. If type is not present, the EXISTS function merely reports whether pathname
exists. (That is, -ANY is the default when type is omitted.)

The following example illustrates the use of the EXISTS function. The program checks to
see if the file MEMO.NEW exists. If it does exist, the program calls ED to allow the user to
edit MEMO.NEW. If MEMO.NEW does not exist, the program calls ED to allow the user to
edit MEMO.OLD:

&IF [EXISTS MEMO.NEW] STHEN ED MEMO.NEW
&ELSE ED MEMO.OLD

Using CPL With Subsystems: &DATA Groups
Many utilities,  such as  ED (the  text  editor)  or  BEND (a  tinker)  require  or  accept
subcommands. Similarly, many user programs require that data be typed in at the terminal.
CPL's &DATA directive allows CPL programs to supply the data or subcommands needed
by these programs and utilities.
&DATA groups resemble &DO groups in that both are groups of statements set off by an
opemng directive and a closing &END. In each case, the statements within the group are
treated as a unit.

The form of the &DATA group is

&DATA command
statement-1
statement-2

statement-n
&END

command is the command that invokes the subsystem or utility. For example,

&DATA  ED  filename

invokes the Editor.

Fifth  Edition  15-13



PRIMOS User's Guide

statement-1 through statement-n represent the commands or data to be passed to the
subsystem or user program. As with all CPL statements, they may include variables, function
calls, and directives.
The &END statement, on a line by itself, ends the &DATA group.

Here is an example of a CPL program, using an &DATA group, that compiles, links, and
executes a PL/I program:

/*CPL  program  to  compile,  link,  and  execute  a  PL/I  program
/*usage:  R  CLR  FILENAME
/ *
&ARGS FILENAME
P L 1  % F I L E N A M E %  / * C o m p i l e  p r o g r a m
/ *
& D A T A  B I N D  / * I n v o k e  B I N D

LOAD  %FILENAME%  /*Prov ide  BIND  commands,
L I  P L 1 L I B  / * v i a  S d a t a  d i r e c t i v e s
L I
FILE

SEND /*End  of  &data  group
RESUME  %FILENAME%.RUN  /*Execute  runfile

T e r m i n a l  I n p u t  i n  & D A T A  G r o u p s  - ~
You may want a CPL file to invoke a subsystem or user program, give a few subcommands
from within the CPL file, and then allow you to give further commands from your terminal.
You do this by including CPL's &TTY directive within the &DATA group.

The format is

&DATA
statement-1

statement-n
&TTY
&END

Note

You cannot use the &TTY directive if your CPL program is executed as a phantom or Batch
job. In such cases, you may be able to use the &TTY_CONTINUE direcuve. See the CPLUser's Guide for more information.

The &TTY directive executes after all other statements in the &DATA group have been
executed. When you leave the subsystem, control returns to the CPL file.

15-14  Fifth  Edition



77?e Basics of CPL

An &TTY Example
This example shows how the &TTY directive can work with a user program Suppose you

c«r7uSinamed  PURCHASE)  **  "*  ^  f-  *™  ohL^^Zr,
Dept.  name:
Dept.  number:
Customer  name:
Acct.  number:
Amount  of  purchase:

The hardware department can use the following CPL program (called UPDATE CPL) to
invoke the PURCHASE program and automatically supply the first two items of intaation-

&DATA R PURCHASE
HDWR
38

&TTY
&END

™,rTrTPle ** Sh0Wn °°Uld ^ a ^^ CPL Pr°gram- 0r' il mi§ht ** Part of a largerprogram.
A sample terminal session looks like this

OK, R UPDATE
dept.  name:  HDWR
dept.  number:  38
customer  name:  H.L.  Smith
acct.  number:  35684
amount  of  purchase:  536.8  9
OK,

How CPL Programs End: The &RETURN Directive

Every CPL program ends with the directive &RETURN. You may either supply this directive
as the last line of the CPL file or allow the CPL interpreter to add the ££^£^

JorUeZpteS,° "" ** &RETURN ^^ t0 St°P ** pr°gram before *e end of ^ «*
&ARGS A

&IF %A% > 20 &THEN &RETURN

Fifth  Edition  15-15



PRIMOS User's Guide

&ELSE  &D0

&END
&RETURN

Errors in CPL Programs
CPL syntax errors halt the CPL program and return the user to command level.
PRIMOS syntax errors normally do the same. However, three exceptions to this rule exist:

. PRIMOS errors that occur during the execution of an &DATA group within the CPL
program do not halt the program. Rather, they halt execution of the &DATA group and
resume execution of the CPL program at the statement immediately following the
&DATA group.

• Warning messages from PRIMOS or its subsystems do not normally halt execution of a
CPL program.

• If you use the &SEVERITY directive (explained in the CPL User's Guide) in your CPL
program, you can modify your program's response to PRIMOS errors and warnings.

Debugging CPL Programs

Syntax Errors
If syntax errors prevent a CPL program from executing, the interpreter displays information
at your terminal or in a command output file, if one is open.
The information presented by the interpreter includes

• A line of text giving the CPL error number and the line number in the CPL program at
which the error occurred.

• A full error message.
• The text of the line of source code in which the error occurred.
. A line describing the action taken by the CPL interpreter and giving the name of the

program in which the error occurred. For example,

OK, R BLUNDER

CPL ERROR 40 ON LINE 2.

A  reference  to  the  undefined  variable  "FILLNAME"  has  been  found
in  this  statement.

15-16  Fifth  Edition



777 e Sas/cs of CPL

SOURCE:  como  %fillname%.como

Execut ion  o f  p rocedure  te rminated.  BLUNDER  (cp l )
ER!

Se  1_33_&5_""  BLUNDERa>L  rained  a  misprint,  FiXLNAME,  for

L̂SipC? primos eras' '""a PWM0S emr message'fou<wed b*
Logic  Errors

C^&^̂ Ẑ̂ ^̂  lnC01TeCt r£SUltS' y°U Can USC me facilities Provided ̂CPLs &DEBUG directive to track down the errors. CPUs debugging facilities offer

' aS!? WatCWng' t0 dlSPlay ̂  ValUC °f a Variable each time ** vaiue is ̂ t or
• Echoing, to display commands and directives as they are read. (This can reveal

u n e x p e c t e d  b r a n c h i n g . )  v  v e m
* ^n°ueXeCUte °Pti°n' t0 ^ the ^toprcter to walk through the CPL program without

actually  executing  any  of  the  commands  it  contains.  program  without

For full details on debugging CPL programs, see the CPL User's Guide.

CPL Directives Summary

mLu^  7  "^T  ™ose  ma*ed  wi*  asterisks  (*)  are  discussed  in  this  chapterAll  of  them  are  discussed  in  detail  in  the  CPL  User's  Guide.  "wprer.

Variable-handling and Argument-handling Directives

D i r e c t i v e  r j ^
*&ARGS

&SET_VAR

Defines arguments to be passed to the CPL program from the com
mand line that executes the program.

Variable * "* ^ ** itS V3lm' °T alters the value of an existinS

Branching Directives

D i r e c t i v e  j j ^
&IF...&THEN...&ELSE Allows conditional branching.
&SELECT

* &DO...&END

Allows conditional branching among a number of specified alterna-

Groups statements to be treated as a single unit syntactically (For

C  SSg&i  ____LEV*""-  *=  *<»»  -  *-  £
r

&THEN or &ELSE directive.)

Fifth  Edition  15-17



PRIMOS User's Guide

&D0  tieration...&END

*  &DATA...&END

&GOTO...&LABEL

*  &RETURN

&STOP

Allows conditional iteration (that is, repeated execution) of a group
of statements. CPL supports counted loops, &WHELE, &UNTEL, and
&REPEAT loops. It also has two types of loops that take advantage
of CPUs wildcard capabilities.
Groups statements to be treated as data or subcommands for user
programs or PRIMOS utilities (such as ED or BEND).
&GOTO forces an unconditional branch to the statement immediate
ly following the &LABEL directive.
Halts execution of program or routine and returns control to_user or
calling program. The CPL interpreter puts an implicit &RETURN
statement at the end of each CPL program.
Halts execution of a CPL program, whether it is used in the main
program or in an internal routine.

Subroutines and User-defined Functions (Internal and External Procedures)

Directive
&CALL
&ROUTTNE
&RESULT

Use
Calls (transfers control to) an internal routine.
Defines and names an internal routine.
Allows a CPL program to serve as a user-defined function for other
CPL programs.

Execution-control Directives

Directive
&DEBUG

&EXPAND
&SEVERITY

Use

Turns on (or off) CPUs debugging facility during program execu
tion. Options to this directive specify debugging actions to be taken.
Allows a CPL program to use an abbreviation file.
Defines the behavior of the CPL program (stop, continue, or call an
error-handling routine) when system-defined errors or warnings oc
cur.

Error-handling and Condition-handling Directives

Directive
&CHECK...&ROUTINE

&ON...&ROUTTNE

&REVERT
&SIGNAL

Use
Checks for user-defined error conditions. Defines an internal routine
to act as error-handler if the error occurs.
Defines a routine to act as a condition handler for a CPL program or
routine. (For information on conditions, see Chapter 20, The Condi
tion Mechanism.)
Disables a specified condition handler.

Signals a user-defined (or system-defined) condition to the condition
mechanism.

15-18  Fifth  Edition



Phantom and Batch Job Processing

PREMOS provides phantom and Batch job processing so that you can run command files and
programs without tying up your terminal. When you run a program interactively, you need to
wait until it finishes execution before you can do something else at the terminal When you
use phantom or Batch execution, your terminal remains free for other work while your
phantom or Batch job executes.

Phantom Execution
When you use phantom execution, PRIMOS carries out your job as if it were being run bv
another user PREMOS logs in this user, called a phantom process, and execute! tifeTob in
die phantom s environment. Meanwhile, PREMOS returns you immediately to command
level so mat you can go on woridng interactively at the terminal. When the 3___Ttob
terminates, PREMOS logs out the phantom process and informs you that SJo. ic^le e

Processes are the basic unit that PRIMOS uses to organize its work PRIMOS establishes «

SS2  ZTh  l0gged-in  USCT'  fOT  "*  Phant0m'  md  for  certain  other  ,SStaS_^process operates in its own environment, including such characteristics as aspecificterminalE
assignment,  command  environment  limits,  and  the  tike.  A  major  oSLSSto
is to share the system's physical resources among processes. °rganizatl0nal task of PRIM0S

You can run command input fties and CPL programs as phantoms. A command file or CPL
prog am run as a phantom includes commands, program invocations, and any mput data
Phantoms are especially useful for long compilations, linkings, and execSnT that are
debugged and require no interactive terminal input. Certain PRIMOS systen utilities ffor
example, the Batch system and SPOOL) are implemented as phantom processed. (

Using Phantoms
Initiate a phantom process with the PHANTOM command. The format is

PHANTOM  pathname  [Y  CPL^ris\l
L  I  file-unit  J  J

Fifth  Edition  16-1



PRIMOS User's Guide

pathname is the name of a CPL program or COME file. The standard filename suffix for
command input files intended to be used as phantom command files is .PH. However, the
PHANTOM command does not recognize the .PH suffix, so you must also include the suffix
on the command line when you type the pathname (or objectname). Do not use the .PH
suffix for CPL files.
If you are running a COMI file, you may include the number of the file-unit on which the
command fde is to be opened. If you omit file-unit, file-unit 68 is used. (File-units may not
be specified for CPL programs, which allocate their file-units automatically.)
If a CPL program is being mn as a phantom, then CPL-args are the arguments to be passed to
the CPL program.
The System Administrator sets the maximum number of phantom users allowed on your
system. The PHANTOM command checks for available phantom processes.
The following message is displayed if no process is available:

No  phantoms  are  available.  filename

Control is then returned to PRIMOS. When a phantom process is available, the phantom user
is logged in under your user ID and the following message is displayed:

PHANTOM  is  user  usernumber

usernumber is the number assigned by PRIMOS to the phantom process.
Note

You cannot initiate a phantom process on your local system while you are attached to a directory
on a remote disk. See Chapter 20 for more information on remote disks.

Phantom Operation
Once the phantom process is logged in, you are returned to PREMOS command level. You
can continue to do other work while the phantom process runs.

input and Output: Phantom processes are like users with no terminals. Phantom
processes cannot execute programs that require input from a terminal. Any instruction that
requires terminal input causes the process to abort and the phantom to be logged out.
If a command file or program being mn as a phantom produces output, the file or program
must contain an instruction to open a COMO file. All output is then wntteri.to the COMO
file. If a phantom process attempts to produce output without first opening a COMO file, the
output is lost.

Initiatinq Other Phantoms: It is possible to initiate another phantom from a miming
phantom in a manner similar to chaining COMI files. However, there is no guarantee that a
phantom user process will be available when the process is requested by a command file.

16-2  Fifth  Edition



Phantom and Batch Job Processing

Global Variables In Phantoms: A global variable file that is active for your user
process is not active for a phantom process that you initiate. If you mn a phantom command
file or CPL program that refers to global variables, the phantom must also activate the
appropriate global variable fde.

Note
Phantoms you initiate do not inherit your global variables, non-default search rules, or open file-
units. For example, a phantom can only refer to file-units opened by die phantom itself.
Phantoms you initiate do inherit your current attach point, your origin directory, and your user
ID.

Phantom Logout
The final instruction of a COMI file that is mn as a phantom should be LOGOUT. If it is not,
the phantom reports an abnormal termination when it is logged out. A CPL program mn as a
phantom does not need the LOGOUT command for a normal logout.
After completing their work, phantom users are automatically logged out. To cancel a
phantom process before completion, use the following command:

LOGOUT -usernumber

usernumber is the user number assigned by PREMOS.
You can log out a phantom from a user terminal only if the terminal is logged in with the
same user ID as the phantom. Phantoms can also be logged out from the supervisor terminal.

Logout Notification: When a phantom logs out, notification is ordinarily sent to the
terminal of the user who started the phantom. The following example shows a message
generated after a normal phantom logout:

Phantom  87:  Normal  logout  at  11:27
Time  used:  OOh  00m  connect,  00m  04s  CPU,  00m  05s  I/O

Forced logout (the result of an error that halts the phantom program), logout from a terminal,
or a missing LOGOUT command in a COMI fde results in an abnormal logout message, as in
the following example:

Phantom  113:  Abnormal  logout  at  15:49
Time  used:  OOh  00m  connect,  00m  04s  CPU,  00m  03s  I/O

In these messages, the figures following the phrase Time used indicate elapsed time, CPU
time, and I/O time used by the phantom process.

Controlling Logout Notifications: You can use the LON command to control whether
the normal phantom logout notifications are sent to your terminal. The format is

LON f -OFF "1
I  -ON  J

Fifth  Edition  16-3



PRIMOS User's Guide

The command LON -OFF prevents the display of phantom logout notifications at your
terminal. This can be useful if you don't want the logout notification to disturb your screen
display, such as when you are using a text editor or mnning a COMO file.
Use LON -ON to reenable phantom logout notification at your terminal after you have given
LON -OFF. If any phantoms logged out while LON -OFF was in effect, you are notified
after you give the LON -ON command.
You can start a phantom and then log out before the phantom terminates. The phantom
continues to mn until it logs out by itself. En such cases, you don't receive logout notification.
However it is possible to set up programs to record phantom logout notifications, using the
subroutines LON$R and LON$CN. For information on these subroutines, see the Subroutines
Reference III: Operating System.

Phantom Status Information
Use the STATUS ME command to get a list of all users logged in under you user ID.
Phantom users are distinguished by the word phant in the line number field of the STATUS
list. For example,

OK, STATUS ME

User
Decimal)
HAYDN
HAYDN
<NOTESll>  <SYSS44>

User  No  Line  No
(In  Decimal) Devices

2  0 <MUSIC3>
1 1 1  p h a n t <MUSIC7>

The STATUS command and its various arguments are summarized in Appendix G and fully
discussed in the PRIMOS Commands Reference Guide.

An Example Phantom Command File
The phantom command file TEST.PH contains the following commands:

COMOUTPUT TESTPH.COMO
DATE
FTN SQUARES
BIND
LO SQUARES
L I
MAP FULL.MAP -FULL
MAP UN.MAP -UNDEFINED
FILE
DATE

/*  Open  Command  Output  File

LOGOUT

16-4  Fifth  Edition

/ *
/ *

Compile  "Squares'
Link  "Squares"

/ *
/ *
/ *
/ *
/ *

Phantom  test  completed
COMO  -END  would  normally  go  here.
It  has  been  omitted  so  the  logout
sequence  could  be  shown  in  the
comoutput  fi le .



Phantom and Batch Job Processing

You invoke this phantom with the command PH TEST.PH. The dialog is

OK,  PH  TEST.PH
PHANTOM is  user  17  6
OK,

The phantom creates this output file, TESTPHCOMO:

OK, DATE
13  Dec  88  20:15:12  Thursday
OK,  FTN  SQUARES  /*  Compile  "Squares'
0000  ERRORS  [<.MAIN.>FTN-REV22.0]
00 00 ERRORS [<SQUARE>FTN-REV22.0]
O K ,  B I N D  / *  L i n k  " S q u a r e s "
[BIND  rev  22.0]
: LO SQUARES
:  LI
BIND COMPLETE

MAP  FULL.MAP  -FULL
MAP UN.MAP -UNDEFINED
FILE

OK, DATE
13  Dec  84  20:15:16  Thursday

/*  Phantom  test  completed

OK,
OK,

OK,
OK,

/*  COMO  -END  would  normally  go  here.
/*  It  has  been  omitted  so  the  logout
/*  sequence  could  be  shown  in  the
/*  comoutput  file.

LOGOUT

FRED  (user  176)  logged  out  Thursday,  13  Dec  88  20:15:16.
Time  used:  OOh  00m  connect,  00m  05s  CPU,  00m  01s  I/O.

Batch Execution
PREMOS provides a Batch subsystem for mnning programs detached from a user terminal.
Batch provides a more regulated environment than simple phantom execution. To use the
Batch subsystem, you create a file that describes the environment (minimum CPU time, input
and output files, and the like) required by the program being run. This file, called a Batch
job, can be a COME or phantom file (described in the previous section), or a CPL file
(described in Chapter 15); Batch jobs need not contain special Batch commands. After
creating a Batch job, you submit it to the Batch subsystem with the EOB command.

Why  Batch?
Batch is especially useful in the following situations:

• If a task runs for a long time and requires predictable input, submitting it as a Batch job
frees your terminal for interactive work.

Fifth  Edition  16-5



PRIMOS User's Guide

• If a task is known to monopolize system resources, submitting it as a Batch job reduces
its competition with interactive users; if the job is extremely greedy, it can be
configured to mn only when no interactive users are present on the system.

• If a given resource (say a tape drive) is available only at certain hours of the day, users
can schedule their use of that resource in advance by submitting Batch jobs to a queue
that processes jobs only when that resource is available.

• If a program is to be run many times, a user can specify all the conditions under which
it should be run in a Batch job; then, whenever the program must be mn, the Batch job
can be submitted without further ado.

How Batch Works
When a Batch job is submitted, the Batch monitor, the program that oversees the Batch
subsystem, assigns the job to one of the Batch queues. A Batch queue is a list of jobs that
are waiting to be run. Normally, the first job submitted to a queue runs to completion, then
the second, then the third, and so on. A submitted Batch job is placed at the bottom of the
list; when it reaches the top of the list, it is mn.
Normally, all interactive users have a higher priority than any job in the Batch subsystem.
The Batch subsystem is usually configured to mn user jobs in the background of the system.
That is, Batch jobs are mn concurrentiy with interactive jobs, but at lower priorities. As a
result, Batch jobs mn more slowly when the system is heavily loaded, since they are lowest
on the CPU's list of things-to-do. Within Batch, jobs running in higher-priority queues get
more of the CPU's attention than jobs running in lower-priority queues. When the system is
lighdy loaded, Batch jobs mn more swiftly.
A particular installation may have a maximum of sixteen different Batch queues; each queue
may be tailored to suit a particular class of job. Your Batch Administrator, the person who
oversees the configuration of Batch, decides how many queues your system needs and
defines them with the BATGEN command. Normally, each system has some queues
designed for short jobs; these jobs ran at a higher priority, but are allowed a very limited
allotment of CPU time in which to complete execution. Other queues, designed for ordinary
jobs, have a lower priority and a higher CPU time; a few, designed for CPU-intensive jobs, -"s^
run at very low priority but are allowed a lot of CPU time. A queue's priority determines how
much of the CPU's attention is devoted to processing jobs in that queue.
Furthermore, Batch jobs may be held in their queues by operators, then released to run at
appropriate times. Thus, extremely long jobs, such as file updates and backups, might be set
up as Batch jobs during the day, then run under operator control at night; alternatively, they
could be run under special Batch queues that are active only at night.

Creating a Batch Job
Batch jobs can be COMI files, CPL files, or phantoms; the Batch subsystem can deal with all of
these comfortably. After you create your Batch job with an editor, try running it once with the
appropriate PRIMOS command (COMINPUT, CPL, or PHANTOM) to make sure that it does
not contain any syntax errors. (The Batch subsystem does not check a submitted job for syntax
errors in the job itself; an incorrect job aborts silentiy when it reaches the erroneous line.)

16-6  Fifth  Edition



Phantom and Batch Job Processing

r

Note
Batch jobs that you initiate inherit your origin directory, current attach point, and user ID. Batch
jobs do not inherit your global variables, non-default search rules, or open file-units. For
example, a global variable file that is active for your user environment is not active for a Batch
job. If your Batch job refers to global variables, the Batch job itself must activate the appropriate
global variable file.

The JOB command
To submit, monitor, or modify a Batch job, use the JOB command. The format is

JOB pathname [options]

The JOB command has three sets of options:

• Submit-options
• Manage-options
• Monitor-options

Use submit-options to control characteristics of job execution when you submit the job.
Submit-options are discussed below in the section, Submitting Batch Jobs. Use manage-
options to control the execution of a job after you submit it. The manage-options are
discussed below in the section, Modifying and Canceling Batch Jobs. Use monitor-options
to monitor the progress of your jobs in the Batch system. The monitor-options are discussed
in the section, Monitoring Batch Jobs.

Submitting Batch Jobs
When you submit a job with the JOB command, the Batch subsystem accepts your job,
submits it to an appropriate queue, and tells you that your job has been accepted, the home
directory in which it will run, and which queue it now occupies. If you have made an error in
submitting the job, or if the Batch subsystem is not processing jobs, a message is displayed.
For example,

OK,  JOB  testl
[JOB  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]

Your  job,  #00046,  was  submitted  to  queue  normal-1.
Home=<RSRCH>MARY>PAYROLL
OK,

After you submit a job to Batch, it is assigned a job ID, which is a five-digit number that
uniquely identifies a job. (This can be important if you submit the same job more than once.)
Jobs that are submitted with no command-line options are placed in the first available queue,
and assume that queue's default priority.

Submit-options: You can use the following options when you submit a job with the JOB
command:

-ACCOUNTING info

Fifth  Edition  16-7



PRIMOS User's Guide

Allows the user to specify a piece of text to be associated with the job. The specified text is
displayed when the user types JOB -DISPLAY; it has no other effect on the job. This text may not
exceed 80 characters; it cannot be an explicit register setting (octal number) or be preceded by an
unquoted minus sign. If the text contains spaces, commas, or comment delimiters (/*), enclose it
within apostrophes.

OK,  JOB  FRODO.CPL  -ACCT  'Editorial  Department'
[JOB  Rev.  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]
Your  job,  #00001,  was  submitted  to  queue  normal-1.
Home=<SHIRE>BAGEND>FRODO
OK,  job  -display
[JOB  Rev.  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]

Job  frodo.cpl(#00001),  user  FRODO  executing  (queue  normal-1).
Submitted  today  at  3:04:44  p.m.,  initiated  today  at  3:04:46  p.m.
Funit=6,  priority=5,  cpu  l imit=None,  elapsed  limit=None.
Project=DEFAULT,  Notify=No.
Accounting:  Editorial  Department
Home ufd=<SHIRE>BAGEND>FRODO

-ARGS cpl-args
Passes CPL arguments to the job being processed. -ARGS must be the last option on a command
line, because JOB treats any following text (except comments) as the CPL arguments being passed.
This option forces the Batch subsystem to treat the job as a CPL file, regardless of the job's name;
-ARGS can produce surprising results if the submitted Batch job is not a CPL file. The JOB
command doesn't read the CPL arguments; it just passes them to the CPL file when execution of
the file begins.

-COMOUTPUT pathname
Opens a command output file, with specified pathname, at the beginning of a job. This option can
help you find out what went wrong if a Batch job doesn't produce the expected results. If you do
not supply the -COMO option, all error messages produced by a running Batch job are silently
discarded unless the Batch job itself opens a COMO file.

-CPL
Runs the submitted file as a CPL file, no matter what the filename is. (You do not need to use the
-CPL option if you include the -ARGS option or if the filename ends in .CPL.)

■ " " • - { £ _ * }
Specifies the maximum amount of CPU-time (in seconds) to be allotted to the job. If the job
exceeds the time limit, it is aborted. NONE requests that no time limit be placed on the job.

-DEFER date.time
Delays job execution to the specified date and time. You can use the date.time format:
mmJddlyy.hh:mm:ss. For details, see Wildcard Options in Chapter 6.
If the time to which you defer the job has passed, a warning message appears, and the job becomes
eligible for immediate execution.

-™E{^7}

16-8  Fifth  Edition

Specifies the elapsed time (in minutes) to be allowed before the job is aborted. If the job exceeds
the time limit, it is aborted. NONE requests that no time limit be placed on the job.

- F U N I T  n u m b e r  ^ ^
Specifies the file-unit to be used for command input. Permissible values range from 1 through 128.



Phantom and Batch Job Processing

The default value depends upon die queue to which the job is submitted. It is usually file-unit 6.
(File-unit numbers must be expressed in decimal rather than octal with this option.)
You cannot use -FUNIT in CPL jobs, because CPL jobs receive dynamically assigned file-units.
Attempts to use -FUNIT for CPL jobs result in the following message:

Il legal  combination.  -FUNIT  (JOB)

-HOME pathname
Specifies the directory in which the submitted job is to mn. Using this option has the same effect as
providing an ATTACH command as the first line of the command file. The pathname for a
-HOME option, however, may not be a null specification or a relative pathname (that is, it may not
begin with *>), and may not exceed 80 characters.

-NO_COMOUTPUT
Overrides a previously-supplied -COMOUTPUT option. Include this option in an original JOB
submission only if the $$ JOB command line (explained below in the section, Supplying Options
Inside a Batch Job) contains the -COMOUTPUT option. Do not use this option on the same
command line as the -COMOUTPUT option.

-NO_DEFER
Overrides a previously-supplied -DEFER option. Include this option in an original JOB submission
only if the $$ JOB command tine (explained below in the section, Supplying Options Inside a
Batch Job) contains the -DEFER option. Do not use this option on the same command line as
-DEFER.

-NOTIFY
Causes PRIMOS to send a message to the user when the job finishes, indicating whether the job
ended normally or abnormally.

-NO_NOTIFY
Overrides a  previously-supplied  -NOTIFY option.  Include this  option  in  an original  JOB
submission only if the $$ JOB command line (explained below in the section, Supplying Options
Inside a Batch Job) contains the -NOTIFY option. Do not use this option on the same command
line as -NOTIFY.

-PRIORITY value
Determines the job's priority in its queue. Possible values are 0 through 9, with 9 the highest (most
favored) priority. The default depends on the queue.

-PROJECT project-ID
Runs a job under a project ID different from the project ID under which you logged in. The job
acquires the initial attach point of die specified project, so that an ORIGIN command issued in the
job causes an attach to the initial attach point of the specified project ID. The job begins execution
attached to the specified -HOME directory; if none is specified, the job begins execution attached
to the directory from which it is submitted.

-QUEUE queue name
Names the queue in which the job should be placed. (To learn the names and characteristics of
queues, use the BATGEN -DISPLAY command.)
If this option is not specified, the Batch monitor places the job in the first unblocked queue that can
accept the job.

-RESTART J" YES\
I  NO J

Determines whether a job can be restarted following an ABORT or a system shutdown. The default
is always -RESTART YES.

Fifth  Edition  16-9



PRIMOS User's Guide

Modifying Job Options: To modify a job's options after it has been submitted, use the
-CHANGE option of the JOB command. If the job has already begun to execute, you need to

Note
If you submit a job from a directory that has a password (including your current attach point),
you must use the -HOME option. Include die password in the pathname, and enclose the
pathname within single quotation marks. The format is

JOB filename -HOME ,dir-name password'

The following example illustrates a job submitted with options:

OK,  JOB  testl  -ETIME  NONE  -RESTART  NO  -ARGS  TEST

In this example, testl is submitted with no elapsed-time limit, as a CPL file with TEST as the
argument, and is specified not to be restarted.
If, for any reason, the Batch monitor cannot accept the job as submitted, it sends the
requestor information needed to resubmit the job successfully. A list of all Batch error
messages is given in Appendix D.

Modifying and Canceling Batch Jobs
The following sections explain how to use JOB command manage options to refer to
previously submitted Batch jobs, to modify them after submission, and to cancel and restart
them.

Referring to Submitted Batch Jobs: The commands that modify submitted Batch jobs
need an argument that specifies which job is to be altered. You can use either the jobname or
the job ID. The jobname is the name of the file (the last element of the pathname) that you
submitted to the Batch system with the JOB command. The job ID is the five-digit number
displayed by the Batch system when it accepts your submission. (See the section Submitting
Batch Jobs, above.)

If you have only one active (currently in a queue) job with a given name, you can supply that
job's jobname when modifying the job. However, if you have more than one active copy of a
job, referring to the job by its jobname is ambiguous; the Batch subsystem cannot tell which
instance of the submitted job to change. In this case, you must give a job ID instead of a
jobname when changing the submitted job.
For example, if file TEST has been submitted once, the command JOB TEST -CANCEL is
adequate. But if two submissions of TEST (for example, #00057 and #00064) are active, you
receive the following message:

Multiple  jobs  with  this  name  (use  internal  name).

In this case, you must use the job ID (also known as the internal name) to tell the Batch
system which job to cancel, as follows: JOB #00057 -CANCEL. You must include the
pound sign (#) as part of the job ID.

16-10  Fifth  Edition



Phantom and Batch Job Processing

restart the job after changing it. (See the section, Restarting Jobs, for an explanation.) The
format of the JOB command with the -CHANGE option is

JOB  -j  .  >  -CHANGE  submit-option  [argument]

where submit-option is any of the options (with an argument, if required) listed in the section,
Submitting Batch Jobs, except -QUEUE and -PRIORITY.
The following example illustrates the use of the -CHANGE option:

OK,  JOB  testl  -DEFER  12:00
[JOB  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]

Your  job,  #00057,  was  submitted  to  queue  normal-1.
Deferred  until  today  at  12:00:00  p.m.

OK,  JOB  testl  -CHANGE  -NO_DEFER
[JOB  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]
(Changes  made)  Job  testl(#00057)  waiting.
OK,

A job's -QUEUE and -PRIORITY options cannot be changed. If one or both are in error,
you must cancel the job and resubmit it with the correct options.

Restarting Jobs: To restart a job already running, use the JOB command with the
-RESTART option. The format is

JOB { J£JJJM } -RESTART

JOB -RESTART causes a job to abort and later to restart if it is in a restartable state. If the
job cannot be restarted, it aborts only. Note that JOB -RESTART works only on executing
jobs. JOB -CHANGE and JOB -RESTART are often used together, you can first change an
executing job's options with JOB -CHANGE, and then use JOB -RESTART to force the job
to abort and begin executing with the new options.

The following example illustrates changing and restarting an executing job:

OK,  JOB  SCORES  -CHANGE  -HOME  resrch>stats>newstats
OK, JOB SCORES -RESTART

The JOB -CHANGE option modifies the job's options; the JOB -RESTART command
terminates execution and then flags the job as ready for restarting under its new conditions.

Note
Note the difference between the -RESTART option with the YES and NO arguments (a submit-
option, described in the previous section) and the -RESTART option with no arguments (a
manage-option, described in this section). The YES and NO arguments indicate whether or not a
job may be restarted. The -RESTART option without arguments aborts the job and attempts to
restart it.

Fifth  Edition  16-11



PRIMOS User's Guide

Canceling Jobs: To prevent the running of a Batch job that is waiting in the queue, use
the -CANCEL option. The format is

JOB  {j°0b™™}  -CANCEL

This command does not halt a job that has started to mn. To halt a running job, use the
-ABORT option (explained in the next section). In the following example, a job is submitted
and then canceled:

OK,  JOB  testl  -DEFER  12:00
[JOB  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]
Your  job,  #00060,  was  submitted  to  queue  normal-1.
Deferred  until  today  at  12:00:00  p.m.
Home=<SALES>RICHTER>BATCHUPDA
OK,  JOB  testl  -CANCEL
[JOB  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]
Job  TEST1(#00060)  cancelled.
OK,

Aborting Jobs:  To terminate execution of  a  job already mnning,  use the -ABORT
option. The format is

JOB {J5_T} -ABORT
This command cancels a waiting, deferred, or held job and forces a mnning job to log itself
out immediately. For example,

OK,  JOB  testl
[JOB  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]
Your  job,  #00038,  was  submitted  to  queue  normal-1.
Home=<SALES>RICHTER>BATCHUPDA
OK,  JOB  testl  -ABORT
[JOB  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]
Job  TEST1  (#00038)  aborted.

Notes
Remember that JOB -ABORT and JOB -RESTART accept a jobname in place of a job-ID only
if the user has only one active job of that name. See the section Referring to Submitted Batch
Jobs, above, for details.
Only one of the manage-options (-CHANGE, -CANCEL, -ABORT, and -RESTART) may
appear on a JOB command line at one time. For example, JOB TEST -ABORT -RESTART is
illegal.

Supplying Options Inside a Batch Job
Use the $$ JOB command line to include command-line options for a Batch job inside the
job's command file. Any or all of the submit-options, listed in Table 17-1, can be used on the

16-12  Fifth  Edition

-■̂ ^̂v

"



Phantom and Batch Job Processing

$$ JOB command line. You may not use any of the manage-options in the $$JOB command
line. The format of the $$ JOB command line is

$$  JOB  <  j  V  [submit-options]

If a specific user-ID is given on the $$ JOB command line, only a user logged in with that
user ID can submit the file. An asterisk (*) indicates that any user can submit the file.
Assume that user Richter adds the following line at the beginning of the Batch job testl:

$$  JOB  RICHTER  -COMOUTPUT  testl.como  -queue  express-1  -CPTIME  none

From now on, each time Richter types JOB testl, the job produces the COMO file,
testl.COMO, runs in the express-1 queue, and has no CPU-time limit.
If you expect to use the same JOB options whenever a job is submitted, include those options
in a $$ JOB command line; if you expect to use different options with the same Batch job,
specify the options independendy whenever you submit the job with the JOB command.
However, if you are submitting a job and would like its options to be different from those
included in a $$ JOB command line, you can override the $$ JOB options with your JOB
command. For instance, if user RICHTER decides to submit testl to a queue that requires a
CPU-time limit, she can submit testl, as follows:

JOB  testl  -CPTIME  180

Options given on the JOB command line at PRIMOS level override options included in a $$
JOB command line within your file.

Note
A command file that includes a $$ JOB command line does not have to be mn as a Batch job. If
you mn such a file interactively, PRIMOS ignores the $$ JOB line.

The combination of the JOB command and the $$ JOB command tine may contain a
maximum of 160 characters. If your JOB command exceeds the number of characters visible
on the terminal screen, continue input without pressing the return key.

Monitoring Batch Jobs
You may request information on the progress of your own jobs within the Batch system in
three ways:

• Use the -NOTIFY option when submitting a job
• Use the JOB command with the -STATUS or -DISPLAY options at any time after you

submit the job
• Use the MESSAGE command to have your Batch job send you messages at specific

points during its execution

Fifth  Edition  16-13



PRIMOS User's Guide

Using the JOB -NOTIFY Option: A job submitted with the -NOTIFY option informs
you at job termination whether your job has completed or aborted. For example,

OK,  JOB  testl  -NOTIFY
[JOB  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]
Your  job,  #00131,  was  submitted  to  queue  normal-1.
OK,
Job  testl  for  RICHTER  (#00131)  completed.

If you forget to submit a job with the -NOTIFY option, you can add the option with the JOB
-CHANGE command; similarly, you can use

JOB jobname -CHANGE -NO_NOTIFY

to mm off a previously-specified -NOTIFY option.

Using JOB -STATUS and JOB -DISPLAY: After  you submit  a Batch job,  you can
find out what is happening to the job with one of the monitor-options, -STATUS and
-DISPLAY. The format is

tor I"/ J°bname \~] -
JOBl\  job-ID  j\J-

-STATUS
DISPLAY

The jobname and job-ID arguments allow you to specify the jobs on which you want
information, as follows:

Argument  Desc r ip t i on
jobname Requests information on all active jobs with the name jobname (useful with

multiple submissions of a file).
job-ID Requests  information  on  one unique instance of  a  job.

If no argument is supplied, the Batch subsystem supplies information on all the user's active
jobs.

O p t i o n  D e s c r i p t i o n
-STATUS Displays the job's jobname and job-ID, the name of the queue in which it is

placed, and its execution status: held (delayed by operator request), waiting,
deferred, or executing.

-DISPLAY Displays the same information as -STATUS as well as values for all JOB and
$$ JOB command options, both those specified by the user and those assigned
from queue-specified defaults. -DISPLAY also shows the home directory of
the job, including any directory passwords in the pathname.

Example of the JOB -STATUS Command: Assume that user RICHTER submitted a
job named testl. The job is stored in the subdirectory <SALES>RICHTER>BATCHUPDA.
The JOB -STATUS command generates the following report:

16-14  Fifth  Edition



Phantom and Batch Job Processing

OK,  JOB  testl
[JOB  rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]

Your  job,  #00044,  was  submitted  to  queue  normal-1.
Home=<SALES>RICHTER>BATCHUPDA
OK,  JOB  -STATUS
[JOB  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]

No  waiting,  deferred,  or  held  jobs;  1  executing  job.
OK,

Example of the JOB -DISPLAY Command: Assume, as above, that user RICHTER
submitted a job named testl. The JOB -DISPLAY command generates the following report:

OK,  JOB  -DISPLAY
[JOB  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]
Job  tes t l (#00044) ,  user  RICHTER  execut ing  (queue  normal -1) .
Submi t ted  today  a t  1 :40:08  p .m. ,  in i t ia ted  today  a t  1 :40:09  p .m.
F u n i t = 6 ,  p r i o r i t y = 5 ,  c p u  l i m i t = N o n e ,  e l a p s e d  l i m i t = N o n e .
P r o j e c t = D E FA U LT,  N o t i f y = N o .
Home  directory=<SALES>RICHTER>BATCHUPDA
OK,

If a job is restarted, the following message appears after the Submitted. . . tine in the
report above:

(This  job  has  already  executed  n  times).

n is the number of previous executions (or the number of restarts).

Using the MESSAGE Command: Another way to monitor your Batch jobs is to have
the jobs send messages to you announcing the completion of key portions of the job. To do
this, include the MESSAGE command in your Batch job. (To be notified when the job as a
whole has completed, submit jobs with the -NOTIFY option, described in the section,
Submitting Batch Jobs.)

Messages From CPL Programs: CPL programs put their messages in &DATA groups.
The format is

&DATA MESSAGE user-ID
text of message

&END

For example,

&DATA MESSAGE  BEECH
Customer  l i s t  update  comple ted

&END

If the message recipient is not logged in, the CPL job aborts. To avoid this, use the
&SEVERETY &ERROR &IGNORE directive.

Fifth  Edition  16-15



PRIMOS User's Guide

Messages  From COMINPUT Files:  Include  message  text  in  COMINPUT files  as
comment lines:

MESSAGE user-ID
I* text of message

For example,

MESSAGE BEECH
/*  Customer  update  completed

The comment characters preceding the message prevent errors from occurring if the recipient
of the message is not logged in when the message is sent.

Monitoring the Entire Batch Subsystem
You may request information on usage of the entire Batch subsystem with the command:

BATCH r "STATUS ~l{ :

- >

"

DISPLAY/

The BATCH -STATUS command displays a one-tine summary giving the number of
waiting, deferred, or held jobs, the number of queues that have waiting, deferred, or held
jobs, and the number of executing jobs. If there are waiting, deferred, or held jobs as well as
executing jobs, the total number of active Batch jobs is also displayed. For example,

OK,  BATCH -STATUS
[BATCH  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]
3  waiting,  deferred,  or  held  jobs;  1  executing  job.

The BATCH -DISPLAY command displays information on Batch usage in two tables. The
first table displays the number of jobs waiting or held in each queue. The second table lists
the number of jobs currendy executing and identifies each by user ID, job ID number, ^^
phantom user number, and queue. An example follows.

OK,  JOB  batchupda
[JOB  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]
Your  job,  #00031,  was  submitted  to  queue  normal-1.
Home=<SALES>RICHTER>BATCHUPDA
OK,  BATCH  -DISPLAY
[BATCH  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]
No  queues  have  waiting,  deferred,  or  held  jobs.

1  currently  running  job:

User  Jobid#  #  Queue

RICHTER  #00031  126  normal-1

16-16  Fifth  Edition



Phantom and Batch Job Processing

Monitoring  Characteristics  and  Availability  of  Queues:  You  can  get  information
about your site's Batch queues with the BATGEN command:

^  1  -DISPLAY  [queuename]  J

BATGEN-STATUS:  The  BATGEN  -STATUS  command  lists  the  currently  defined
queues, in the order established by your System Administrator.

OK,  BATGEN -STATUS
[BATGEN  Rev  22.0  Copyright  (c)  Prime  Computer,  Inc.  1988]

Q u e u e :  S t a t u s :

express-1  unb locked  uncapped
express-2  unb locked  uncapped
n o rma l -1  u n b l o cke d  u n ca pp e d
n o rma l -2  u n b l o cke d  u n ca pp e d
background-1  unblocked  uncapped
background-2  unblocked  uncapped  (inactive)

A queue's status is described by one or more of the following words:

S t a t u s  M e a n i n g
blocked  Not  accepting  new  jobs
capped  Not  executing  jobs
unblocked  Accepting  new  jobs
uncapped  Executing  jobs
inactive  Not  executing  jobs;  will  execute  jobs  when a  specified  active  window is

reached

A queue may be both blocked and capped, in which case it neither accepts new jobs nor
processes any jobs already in the queue; it may also be blocked only or capped only. By
default, all queues are unblocked, uncapped, and active.

BATGEN-DISPLAY:  The  BATGEN  -DISPLAY  command  identifies  and  gives  full
characteristics of  the queuename specified.  If  you omit  the queuename, BATGEN
-DISPLAY gives the characteristics of all queues. The following example shows the display
of all queues:

OK,  BATGEN  -DISPLAY

Queue  name  =  express-1,  unblocked,  uncapped.
Active  window  =  FULL
Default  cpt ime=121,  et ime=6,  pr ior i ty=9;
Maximum  cptime=120,  etime=5;  Funit=6;
Delta  r level=0;  Timesl ice=10;

Fifth  Edition  16-17



PRIMOS User's Guide

Queue  name  =  express-2,  unblocked,  uncapped.
Active  window  =  FULL;
Default  cptime=301,  et ime=16,  priori ty=9;
Maximum  cptime=300,  etime=15;  Funit=6;
Delta  r level=0;  Timesl ice=10;

Queue  name  =  normal-1,  unblocked,  uncapped.
Active  window  =  FULL;
Default  cptime=None,  etime=None,  priority=5;
Maximum  cptime=None,  etime=None;  Funit=6;
Del ta  r level= l ;  Timesl ice=20;

Queue  name  =  normal-2,  unblocked,  uncapped.
Active  window  =  FULL;
Default  cptime=None,  etime=None,  priority=5;
Maximum  cptime=None,  etime=None;  Funit=6;
Del ta  r level= l ;  Timesl ice=20;

Queue  name  =  background-1,  unblocked,  uncapped.
Active  window  =  FULL;
Default  cptime=None,  etime=None,  priority=5;
Maximum  cptime=None,  etime=None;  Funit=6;
Delta  r level=2;  Timesl ice=40;

Queue  name  =  background-2,  unblocked,  uncapped.
Active  window  =  20:00  -  07:00;
Default  cptime=None,  etime=None,  priority=5;
Maximum  cptime=None,  etime=None;  Funit=6;
Delta  r level=IDLE;  Timeslice=50;
OK,

The display entries give the following information:

L a b e l  M e a n i n g
Queue  name  Identifies  the  queue  and  tells  whether  jobs  are  being  accepted  and

executed.
Active  window  Specifies  a  time  span  when  queue  is  active.  Your  Batch

Administrator uses the BATGEN ACTEVE_WINDOW subcommand
to set a time window for the queue's activity. Jobs may be submitted
to such a queue at any time, but are executed only during the queue's
active window. If BATGEN -DISPLAY lists a queue's active win
dow as FULL, then that queue is active at all times.

Default  cptime  Specifies  the  default  CPU-time  limit  (cptime)  in  seconds  and
and  etime  elapsed-time  limit  (etime)  in  minutes  for  jobs  that  don't  specify  their

own CPU-time and/or elapsed-time options.
Maximum cptime and Specifies the longest time allowed for any job mnning in the queue.
et ime

Priority  and  Funit  Specifies  default  values  for  priority  and  file-unit.

16-18  Fifth  Edition



Phantom and Batch Job Processing

Delta rlevel and Refers to runtime priorities. Queues with high delta rlevels and large
Timeslice  timeslices  are  best  for  long  jobs;  queues  with  low  delta  rlevels  and

short timeslices are best for short jobs. The larger the delta rlevel
number, the lower the priority.
IDLE is the lowest priority that can be specified for delta rlevel; a
queue with delta rlevel IDLE executes jobs only when no higher-
priority PREMOS processes are waiting for execution.

Fifth  Edition  16-19



File-handling  Utilities

PRIMOS supports several file-handling utilities. These utilities allow you to

• Sort one or more unsorted files into one sorted file
• Merge several sorted files into one sorted file
• Compare files with each other
• Resolve differences between files
• Join files sequentially

This chapter describes basic operations on ASCII (text) files, although the SORT utility can
also process binary files.

ASCII File Structure
The basic unit of file structure is the record. En an ASCII file, a record is a line of text (a
string of ASCII characters terminated by a linefeed character). The file-handling utilities
operate on files one record at a time; they compare and sort files line by line. SORT can also
operate on data items within a line. The discussion of SORT explains how.

Sorting Files

r

The SORT command sorts as many as 20 files, on as many as 50 keys, into a single output
file. SORT preserves the order of input for records with equal keys; that is, it is a stable sort.

Notes
Most sorts are done on ASCII files (also called compressed files), such as those created by the
text editor (ED). The following discussion emphasizes how to do ASCII sorts. In addition,
SORT can process uncompressed files, variable-length files (also called binary files), and fixed-
length files. The basic format for using SORT is the same for every file type, but details vary
from type to type.
SORT can also use the EBCDIC collating sequence to sort files. The PRIMOS Commands
Reference Guide contains complete information and sorting instructions for each file type and
collating sequence.

Fifth  Edition  17-1



PRIMOS User's Guide

Using SORT
To use SORT, you provide information in a three-step or four-step sequence, as follows:

1. Give the SORT command (and any desired options).
2. Specify the sort files and number of sort fields, either by a simple parameter list or by

the use of keywords.
3. Specify the starting and ending columns of sort fields (keys).
4. If you specified -MERGE in Step 1, enter additional filenames.

SORT normally requests the information it wants at steps 2, 3, and 4. However, once you are
familiar with the dialog, you can suppress it by using the -BRIEF option on the command
line. If you specify -BREEF, give the information line by line in the same order that SORT
asks for it. Refer to the sample sort given below for an example of the SORT dialog.

The SORT Command
To invoke SORT, give the SORT command, either by itself or accompanied by one to four
options:

SORT

-BRIEF
-SPACE
-MERGE
f-TAG  "1

_ L-NONTAG J _

SORT options are as follows:

O p t i o n  M e a n i n g
-BRIEF Inhibits  display  of  SORT messages and prompts
-SPACE  Deletes  any  blank  lines  in  the  input  file(s)
-MERGE  Specifies  a  merge  of  presorted  files
-TAG  Specifies  a  tag  sort  (the  default,  described  below)
-NONTAG Specifies a nontag sort (described below)

Specify -TAG when you have large files to be sorted. For unordered files, tag sorts are faster
than nontag sorts. Internally, the tag sort stores input records separately from the key data.
After all keys have been sorted and merged, the corresponding records are then located and
output.

Specify -NONTAG for smaller or well-ordered input files. Internally, the nontag sort stores
each input record with its sort key in the work file. This eliminates the search for each record
after merging, but requires more disk space.

When you give the SORT command without the -BRIEF option, SORT requests the
following information. (If you use the -BRIEF option, give the information in the same
order.)

17-2  Fifth  Edition



File-handling Utilities

• The name of the file to be sorted
• The name of the output file to be created
• The number of keys for the sort (default is 1)

Simple File and Key Specifications
The simplest type of sort reads one unsorted ASCII file and creates another sorted ASCII
fde. SORT can operate on sort keys within a line. Since the file itself contains no information
about where one item begins and another ends within a line, you must provide this
information by defining key fields that correspond to the locations of the data items. You do
this by giving SORT the starting and ending column numbers of each field. Remember that
SORT has no other way of recognizing valid data items within a line, so you need to be sure
that the correct data falls in each field in your file.
To specify a simple sort, list the filenames and number of keys (if greater than 1) on one line,
then list the starting and ending columns for each key field on a separate line. The following
example sorts a list of names and addresses in ascending order, with the entire entry of 80
characters as the sort field:

OK,  SORT  -BRIEF
JUMBLED.NAME S NEAT.NAME S
1  8 0

Unless the -MERGE option has been specified, sorting begins when you enter the last pair of
column numbers. When the sort is complete, SORT displays the number of passes needed for
the sort and the number of items (that is, tines) placed in the output file, and then returns to
PRIMOS command level.

Other File Specifications
If you are sorting more than one file, give all filenames plus the number of key fields on a
single tine in the following format:

-INPUT inputfile [...-INPUT inputfile] -OUTPUT outputfile -KEYS n

For example,

OK,  SORT  -BRIEF
-INPUT CHAOS.1  -INPUT CHAOS.2  -OUTPUT ORDER  -KEYS 2
1  10
15  20  R

BEGINNING SORT

P A S S E S  2  I T E M S  1 0

[SORT-REV22.0]

OK,

Fifth  Edition  17-3



PRIMOS User's Guide

Key Code Specifications
If you want to sort a key field by some code other than simple ASCII, specify the type of
sort by including a key code after the ending column number (separated by one space). You
can specify a reverse sort (in descending order) by typing R after the ending column number
(separated by one space).
Other key codes for ASCII files (compressed and uncompressed) include A and AU for
alphanumeric data, U, LS, TS, LE and TE for numeric data. This section describes the most
commonly used key codes. Other keys are discussed in the PRIMOS Commands Reference
Guide.

Alphanumeric keys: The two alphanumeric key codes are ASCII (A), which sorts in a
strict  ASCII  sequence, and ASCII,  uppercase and lowercase (AU),  which sorts all
alphanumeric characters as if they were uppercase. (The ASCII sequence is given in
Appendix C.) The default key type is strict ASCII (A).
Given the four words, APPLE, alphabet, WHY, and whynot, ASCII (A) produces

APPLE
WHY
alphabet
whynot

AU produces

a lphabet
APPLE
WHY
whynot

Numeric keys: Three common numeric key codes for ASCII sorts are

K e y  M e a n i n g
U Unsigned: numbers without plus or minus signs.
LS Leading Sign: numbers preceded by plus or minus signs.

(Numbers without signs are considered positive.)
TS Trailing Sign: numbers followed by plus or minus signs.

(Numbers without signs are considered positive.)

The Leading Embedded (LE) and Trailing Embedded (TE) keys, which have the sign
embedded in the numeral, are explained in the PRIMOS Commands Reference Guide.

Here is an example of a sort on an LS key:

OK,  SORT  -BRIEF
NUMBERS NUMBERS.1
1  10  LS

17-4  Fifth  Edition



File-handling Utilities

BEGINNING SORT

P A S S E S  2  I T E M S  7

[SORT-REV22.0]

OK,  SLIST  NUMBERS.1
-9999
-8205
-6783

4114
+5483

8265
+9765

OK,

Additional Filenames for the -MERGE Option
After key fields have been specified with the -MERGE option, SORT asks for the number of
additional files to be merged. If you have already listed all input files with the -INPUT
format, this number is 0. Otherwise, give the number of additional files and then the names
of the files, one name per line. When the last name is entered, the mergesort begins. When
the mergesort is complete, SORT displays the number of passes and returns to PRIMOS
command level.

A Mergesort Example
Suppose that you have two transaction files in which each line (record) has the following
format: a transaction number in columns 1 through 5, a credit or debit notation in column 6, a
customer name in columns 8 through 17, a customer ID number in columns 19 through 25,
and other data in the remaining columns. Each file has been sorted by customer name,
customer ID, and transaction number (in reverse order, so that most recent transactions come
first). The full SORT dialog to merge the two files, sorting on the same three keys, is as
follows:

OK, SORT -MERGE
SORT PROGRAM PARAMETERS ARE:

INPUT TREE NAME — OUTPUT TREE NAME FOLLOWED BY
NUMBER OF PAIRS OF STARTING AND ENDING COLUMNS.

CUST.CREDITS CUST.ACCTS 3
INPUT PAIRS OF STARTING AND ENDING COLUMNS
ONE PAIR PER LINE—SEPARATED BY A SPACE.
FOR REVERSE SORTING ENTER "R" AFTER DESIRED
ENDING COLUMN—SEPARATED BY A SPACE.
FOR A SPECIFIC DATA TYPE ENTER THE PROPER CODE
AT THE END OF THE LINE—SEPARATED BY A SPACE.

"A"  -  ASCII
"I"  -  SINGLE  PRECISION  INTEGER

Fifth  Edition  17-5



PRIMOS User's Guide

" D "
11 j 11

" U "
" L S "
" T S "
" L E "
" T E "
"PD"
"AU"
" U I "

DEFAULT
8  17
19  25
1  5  R
INPUT  THE

INPUT  F
CUST.DEBI

-  SINGLE PRECISION REAL
- DOUBLE PRECISION REAL
- DOUBLE PRECISION INTEGER
-  NUMERIC  ASCII,UNSIGNED
-  NUMERIC  ASCII,LEADING  SEPARATE  SIGN
-  NUMERIC  ASCII,TRAILING  SEPARATE  SIGN
- NUMERIC ASCII,LEADING EMBEDDED SIGN
-  NUMERIC  ASCII,TRAILING  EMBEDDED  SIGN
- PACKED DECIMAL
- ASCII, UPPER & LOWER CASE SORT EQUAL
- UNSIGNED INTEGER
IS  ASCII.

NUMBER OF ADDITIONAL FILES TO BE MERGED.
ILES TO BE MERGED, ONLY ONE PER LINE.
TS

(MAX= 10)  :  1

BEGINNING MERGE

PASSES ITEMS 10

[SORT-REV22.0]

OK,  SLIST  CUST .ACCTS
89424+ Jones BR9438 o t h e r data about t r a n s a c t i o n
81884- Jones BR9438 o t h e r data about t r a n s a c t i o n
12345+ Jones BR9438 o t h e r data about t r a n s a c t i o n
67340- Jones XL1489 o t h e r data about t r a n s a c t i o n
54936+ Jones XL1489 o t h e r data about t r a n s a c t i o n
49480- Jones XL1489 o t h e r data about t r a n s a c t i o n
86889+ Smith CS4192 o t h e r data about t r a n s a c t i o n
29622+ Smith CS4192 o t h e r data about t r a n s a c t i o n
23220- Smith CS4192 o t h e r data about t r a n s a c t i o n
21220+ Smith CS4192 o t h e r d a t a about t r a n s a c t i o n

OK,

Comparing Files
The PRIMOS command CMPF permits the simultaneous comparison of as many as five
ASCII files of varying lengths. The format is

CMPF file-lfile-2 [file 3../ile-5] [options]

The CMPF command treats the first file, file-1, as the original file and compares the other
files to it. It then produces output indicating which lines have been added, changed, or
deleted from the original to produce the other files.

17-6  Fifth  Edition



File-handling Utilities

The following options may be specified:

O p t i o n  F u n c t i o n
-BRIEF  Suppresses  display  of  differing  lines  of  text  of  files  being  compared.

Only identification letters and line numbers are displayed.
-MTNL number Sets the minimum number of lines that must match after a discrepancy

between files is found. Needed to resynchronize file comparison.
Default is 3 lines.

-REPORT filename Produces a file with specified filename, containing the differences
found between compared files (in lieu of displaying them at the termi
nal during the comparison process).

-STOP Stops  the  comparison  as  soon  as  a  difference  between files  is  found.

After CMPF discovers a difference between the original file and another specified file,
CMPF attempts to resynchronize the files for comparison. This occurs only when a certain
number of lines match in all the files being compared. The default value is 3, but can be
changed with the -MENL option. The comparison process continues until another difference
is found.

When line differences are reported, either at the terminal or in a report file, each line from
the original file is indicated by the letter A, followed by the number of the tine containing
discrepancies. The corresponding tines of other files are indicated in the same manner, using
letters B through E, respectively.

For example, consider the following two files:

F I L E A  F I L E B

The The
q u i c k s w i f t
brown r e d
f o x f o x
jumps jumps
over over
t h e t h e
l a z y dog
dog

A CMPF comparison of these two files works as follows:

OK,  CMPF  FILEA  FILEB
[CMPF  22.0]

A 2  q u i c k
A 3  b r o w n
CHANGED TO
B 2  s w i f t
B 3  r e d
A 8  l a z y
DELETED BEFORE
B 8  d o g

Fifth  Edition  17-7



MAXIM NOMAXIM
A The
r o l l i n g r o l l i n g
stone o l d
g a t h e r s oaken
no bucket
moss ho lds

no
m i l k

PRIMOS User's Guide

COMPARISON  FINISHED.
2  DISCREPANCIES  FOUND.

OK,

Merging Text Files
The MRGF command merges as many as five ASCII files. The format is

MRGF file-afile-b [file-c ...file-e] -OUTF outputfile [options]

The first fde specified is treated as the original file, and it is assumed that changes have been
made to this file to produce the other files. Pathnames may be used to specify files to be
merged. Unchanged lines of text and nonconflicting changes between files are automatically
copied to the output file, outputfile. The original source files (file-a,file-b, and so on) are not
changed; outputfile is built from them.
When corresponding lines of text in the files differ, the MRGF program asks you to resolve
the conflicts. Conflicts are resolved by entering an interactive mode in which you can specify
the contents of the output file. In this mode, the subcommand x causes all the queried lines
from file-x to be inserted into outputfile, where x = A, B, C, D, or E; A signifies file-a, B
signifies file-b, and so on. The subcommand xn causes tine n from file-x to be inserted.
You can insert new text by entering a blank line at the terminal (thus placing MRGF in input
mode), typing the new text, and then typing another blank line. No text editing can be
performed on lines thus input, and no expansion of tab characters is done. The lines must be
entered character-for-character as they are to appear.
The subcommand GO terminates editing and proceeds with the merge.
The options taken by the MRGF command are similar to those for the CMPF command. An
additional option, -FORCE, causes file-b to be the preferred file if conflicts exist between
several files. No MRGF interactive dialog is generated when conflicts arise if the -FORCE
option is specified, file-b is assumed to be correct, and the other files are forced to comply
with it.
For example, consider the following two files:

17-8  Fifth  Edition



File-handling Utilities

A merging of these two files proceeds as follows:

OK, MRGF MAXIM NOMAXIM -OUTF MIX -MINL 1
[MRGF  22.0]

A l
CHANGED TO
B I The
EDIT.
B
GO

A3 stone
A4 ga thers
CHANGED TO
B3 o l d
B4 oaken
B5 bucke t
B6 ho lds
EDIT.
B3
A3
B6
| Return J
INPUT.
it  would  seem
| Return |
EDIT.
GO

A6 moss
CHANGED TO
B8 m i l k
EDIT.
A
GO

MERGE FINISHED.
3 MANUAIi CHANGES.
NO AUTOMATIC CHANGES

OK,

The subcommand B selects NOMAXEM's version of the differing line in the first edit group
and inserts it into MIX. The subcommand GO returns MRGF to the merge activity.
The subcommands B3, A3, and B6 insert these lines (old, stone, and holds), in this
order, into MIX. An extra I Return | puts MRGF in input mode to accept the string it would
seem. A second extra I Return | puts MRGF back in edit mode. The subcommand GO again
returns MRGF to the merge activity.

Fifth  Edition  17-9



- s
PRIMOS User's Guide

The subcommand A selects MAXIM'S version of the differing line in the next edit group and
inserts it into MIX. The subcommand GO once again returns MRGF to the merge activity.
The output file MIX now contains the following:

MIX

The
r o l l i n g
o l d
stone
ho lds
it  would  seem
no
moss

More detailed information on MRGF appears in the PRIMOS Commands Reference Guide.

Joining Several Files Sequentially
The CONCAT command concatenates files into a single file. A common use of CONCAT is to
concatenate several files into one file, which can then be printed with the SPOOL command.
The format for CONCAT is

CONCAT new-filename [options]

The options govern the format of the printout and the disposition of the files. For details, see
the discussion of CONCAT in the PRIMOS Commands Reference Guide.
When you give the CONCAT command without options, CONCAT goes into input mode. It
asks for the names of the files to be concatenated, and displays a colon prompt. Type the
filenames, one per line. A null line I Return | signals the end of list. CONCAT then goes into
command mode, and displays a right-angle prompt. Type QUIT to end the session. (You can
also type INPUT to return to input mode, or you can give various formatting commands,
which are explained in the PRIMOS Commands Reference Guide.)
For example,

OK, CONCAT TRIPLET
[CONCAT  Rev  22.0]

Enter  filenames,  one  per  line:
FIRST
SECOND
THIRD

Return

>  Q

OK,

17-10  Fifth  Edition



File-handling Utilities

If the file TRIPLET already exists, CONCAT prompts

OK TO MODIFY OLD TRIPLET?

Answering NO returns you to PREMOS command level. Answering YES prompts a second
question:

OVERWRITE OR APPEND:

Answering OVERWRITE causes CONCAT to replace the old TRIPLET with a new version.
Answering APPEND preserves the existing contents of TRIPLET and adds the new files at
the end.

Fifth  Edition  17-11



Tapes

You can back up disk files to magnetic tape and restore tape files to disk using the MAGRST
and MAGSAV utilities. This chapter describes the basic steps required to access a tape drive
and carry out backup and restore operations. Further information appears in the Data Backup
and Recovery Guide, the MAGNET User's Guide, and the PRIMOS Commands Reference
Guide.
To transfer files between tape and disk, you need to carry out the following steps:

1. Obtain exclusive use of a tape drive with the ASSIGN command.
2. Transfer the files with the appropriate utility.
3. Relinquish exclusive use of the tape drive with the UNASSIGN command.

Assigning Tape Drives
Your System Administrator decides how magnetic tape drives may be assigned. The three
possibilities are

• Each user can assign a tape drive from any terminal; operator intervention is necessary
only for processing special requests. This is the default mode.

• Each user must send all assignment requests through the operator, who controls all
access to tape drives. The operator then sends messages to the user, indicating the status
of the assignment request.

• Tape drive assignment from any user terminal is strictiy forbidden. This feature restricts
access to tape drives in security-conscious environments; it is also used when the
operator is not available to process requests.

ASSIGN Command Formats
If your system allows you to make or request tape drive assignments from your terminal, use
the ASSIGN command.

Fifth  Edition  18-1



PRIMOS User's Guide

You can assign tape drives directiy using the following format:

ASSIGN MTpdn [options]

where pdn is the physical device number for the drive you want to assign. Use of certain
options (such as -DENSITY) may require operator intervention.
You may request that the system operator assign a drive by using the MTX argument with the
-ALIAS option. The format is

ASSIGN MTX -ALIAS MTldn [options]

ASSIGN MTX asks the operator to assign any available drive that meets your specifications.
Idn is a logical device number that you choose to refer to the drive in future operations. This
may be different from the physical device number of the device actually assigned. Other
options that you specify (if any) may instruct the operator to assign a drive that can handle a
particular type of tape (for example, a 9-track tape at 6250 bpi). Options may also make
special requests to the operator, for example, to remove the write-ring or to mount a
particular tape.

Other ASSIGN Options
The -WAIT option indicates that you are willing to wait until the requested drive is available.
For a summary of all ASSIGN options, type HELP ASSIGN. For full information on using
the ASSIGN command, see the Data Backup and Recovery Guide.

ASSIGN Related Messages
Suppose you request device MT3 with the command

OK,  ASSIGN  MT3

If your request is successful you receive the message

Device  MT3  Assigned
OK,

If you request any available device, using, for example

OK,  ASSIGN MTX -ALIAS MTO

you receive a message like the following:

Device  MT1  Assigned
OK,

The device number (MT1) is the physical device number of the drive assigned to you. In
future commands, you can use either this number or the logical device number that you chose —v
with the -ALIAS option (MTO) to refer to the drive.

18-2  Fifth  Edition



Tapes

If you ask for a device that is in use and do not specify the -WAIT option, you receive the
following message:

The  device  is  in  use.  (ASSIGN)
ER!

If the operator is not available to handle requests, any attempt by a user to assign a magnetic
tape drive results in this message:

No  Magtape  assignment  permitted.  (asnmt$)

If a request cannot be handled by the operator for any reason, the following message appears
at the terminal:

Magtape  assignment  request  aborted  (asnmt$)

The STATUS DEVICE Command
The STATUS DEVICE command allows you to see which physical devices (tape drives) are
currendy in use. The command displays physical and logical device numbers for any
assigned magnetic tape drives. Tape drives not assigned are not shown in the display. The
format for the STATUS DEVICE command is

STATUS DEVICE

The following example shows a typical display:

OK,  STATUS DEVICE

D e v i c e  U s e r  n a m e  U s r n u m  L d e v i c e
M T O  D I C K E N S  1 3  M T O
M T 1  P O E  6 9  M T 2
OK,

The display headings have the following meanings:

H e a d i n g  M e a n i n g
Device  The  physical  device  number
User name The login name of the user who has the device assigned
Usrnum  The  user  number  of  that  user
Ldevice The logical  device number  being used for  the drive

Releasing Tape Drives
When you complete a magnetic tape operation, release the magnetic tape drive for general
use. Use the UNASSIGN command with one of the indicated arguments:

UNASSIGN  {  ™[%s  MJldn  }  [-UNLOAD]

Fifth  Edition  18-3



PRIMOS User's Guide

If you requested a drive using the format ASSIGN MTX -ALIAS MTldn, you can use the
logical device number you chose:

UNASSIGN -ALIAS MTWn

Otherwise, use the physical device number:

UNASSIGN MTpdn

En the following example you request a specific device:

OK, ASSIGN MTO

Device  MTO  assigned.
OK,

OK, UNASSIGN MTO

En the following example, you request any available device:

OK,  ASSIGN  MTX  -ALIAS  MT1

Device  MT2  assigned.
OK,

OK,  UNASSIGN  -ALIAS  MT1

or you can use

OK,  UNASSIGN  MT2

Note
The -UNLOAD option normally rewinds die tape and places it offline. However, on some
drives or controllers, -UNLOAD rewinds the tape but does not place it offline. Check with your
System Administrator for the action provided by -UNLOAD at your installation.

Who Can Unassign a Drive?
A tape drive can be unassigned only by

• The user who assigned it (on default-privileged systems)
• The system operator

If an operator unassigns your tape drive, no message appears at your terminal. If you
subsequendy attempt to unassign the same device, an error message is displayed.

18-4  Fifth  Edition



Tapes

Backing Up and Restoring Files
After you have assigned a tape drive, use the MAGSAV and MAGRST commands to back
up or restore files.

Backing Up Files With MAGSAV
You can back up files to the assigned tape drive by giving the MAGSAV command. The
format is

MAGSAV [options]

Most backups do not require any options. Options for carrying out special operations such as
selecting a special tape format are documented in the Data Backup and Recovery Guide.
After you invoke MAGSAV, the MAGSAV subsystem responds with a series of questions.
The basic elements of the dialog are the following:

Prompt
Tape  unit:
Enter  logical
tape  number:

Response
Enter the physical or logical device number of an assigned drive (0-7).
For most saves, enter 1. See the Data Backup and Recovery Guide for infor
mation about specifying more than one logical tape.

Note
On machines that use cartridge tapes, you see the prompt Overwrite or Append (o/a) :
instead of Enter logical tape number:. Reply O for a new tape or to overwrite the con
tents of an old tape. Reply A to append backup to current tape contents.

Tape  name:
Date
(MM DD YY)

Rev  no:

Name or
command:

Enter a tape name with a maximum of six characters.
Press | Return | and PRIMOS enters the date.

Enter a decimal integer. You usually enter the revision of PRIMOS running
on your system, for example, 22. If you press | Return | only, the revision
number is set to 0.
Enter the save operation you want MAGSAV to perform. The most common
responses are

filename
*
$A pathname
$R

For a complete list of responses, see the Data Backup and Recovery Guide.
filename causes MAGSAV to save the specified file or subdirectory from the
current directory to tape.
* causes MAGSAV to save all files and directories in the current directory to
tape.

Fifth  Edition  18-5



PRIMOS User's Guide

$A pathname attaches you to the specified directory.
$R terminates die logical tape, rewinds the physical tape, and returns you to
PRIMOS.
Each time you enter a name or command, MAGSAV attempts to carry out the
specified operation and then prompts you for another name or command. If
MAGSAV cannot carry out an operation, it displays an error message and
then prompts for a new name or command. When you have saved all the files
you want to save, enter $R to quit and rewind the tape. Remember to unassign
the tape drive when you finish.

Restoring Files With MAGRST
Use the MAGRST command to restore files from tape to disk. The format is

MAGRST [options]

As with MAGSAV, you can carry out most restores without supplying any options. Options
for special operations are documented in the Data Backup and Recovery Guide.

After you invoke MAGRST, the MAGRST subsystem responds with a series of questions.

Prompt
Tape  unit
(9  trie)  :

Enter  logical
tape  number:
Ready  to
r e s t o r e :

Response
Enter the physical or logical device number of an assigned drive (0-7).

For a single logical tape, enter 1. For information about restores from multiple
logical tapes, see the Data Backup and Recovery Guide.
Enter the restore operation you want MAGRST to perform. The most com
mon responses are

YES
NW  [filename]
$A pathname
PARTIAL

For a complete list of responses, see the Data Backup and Recovery Guide.
YES restores the entire tape and returns you to PRIMOS. MAGRST restores
objects to the directory to which you are currendy attached. A directory tree
on tape becomes a subdirectory tree of your current attach point.
NO requests a different tape unit and logical tape.
NW [filename] displays a tape index at your terminal. If you specify
filename, the index is written to the specified file.
$A pathname attaches you to the specified directory.
partial restores specific files. After you specify partial, MAGRST
prompts you for the pathnames of the files to restore, as follows.

18-6  Fifth  Edition



Tapes

Tree name: Supply the pathname of a file or directory on the tape. MAGRST restores the
file or directory using its objectname (the last component of the pathname) to
the directory to which you are currendy attached. For example, if you are
attached to MYDER and request that MAGRST restore the directory
OLDER>SUBDER from tape, MAGRST copies SUBDIR to disk as a
subdirectory of MYDER, with the pathname MYDER>SUBDER.

Note
If you restore two files or directories with the same objectname to the
same directory, the second overwrites the first,

MAGRST prompts you for a maximum of ten pathnames. MAGRST restores
the specified files when you press I Return [ alone. If you want to restore
more than ten objects, repeat the restore procedure.

Be sure to unassign the tape drive when you finish all backup and restore operations.

Backup and Restore Examples
The following example shows how to assign and unassign drives and carry out simple
backup and restore operations. For more complex operations, refer to the Data Backup and
Recovery Guide.
In the first example, you save a file to tape:

OK, ASSIGN MTO
Device  MTO  assigned.
OK,  LD

<CPOSR3>MOZART  (ALL  access)
35  records  in  this  directory,  43  total  records  out  of  quota  of  0.

4  Files.

L O G I N . C P L  L O G I N . A B B R E V  M Y. G V A R S  R E S U M E

4  Di rec tor ies .

O P E R A S  S Y M P H O N I E S  Q U A R T E T S  C O N C E R T O S

OK, MAGSAV
[MAGSAV  Rev.  22.0  Copyright  (c)  1988,  Prime  Computer,  Inc.]
Tape  unit  (9  Trk):  0
Enter  logical  tape  number:  1
Tape  name:  HITS
Date  (MM  DD  YY):  3-11-88
I Return I

Fifth  Edition  18-7



PRIMOS User's Guide

Rev  no:  22
Name  or  Command:  $1
Name or Command: RESUME
***  Start  of  Save  ***
RESUME (dam)
***  End  of  Save  ***

Name  or  Command:  $R
1  Recovered  MT  10  errors.
OK, UNASSIGN MTO

In the following example, you later restore file RESUME to disk.

OK, ATTACH OLDIES
OK, LD

<CP0SR3>0LDIES  (ALL  access)
12  records  in  this  directory,  22  total  records  out  of  quota  of  0.

1  File.

MEMO

3  Director ies.

O P E R A S  S Y M P H O N I E S  Q U A R T E T S

OK, ASSIGN MT1
Device  MT1  assigned.
OK, MAGRST
[MAGRST  Rev.  22.0  Copyright  (c)  1987,  Prime  Computer,  Inc.]

You  are  not  attached  to  an  MFD.
Tape  unit  (9  Trk):  1
Enter  logical  tape  number:  1
Name:  HITS
Date(MM  DD  YY):  03-11-88
R e v  n o :  2 2
R e e l  n o :  1
Ready  to  Restore:  PARTIAL
Tree  name:  RESUME
Tree  name:
I Return I
***  Starting  Restore  ***
***  End  Logical  tape  ***
***  Restore  Complete  ***

18-8  Fifth  Edition



Tapes

OK, LD

<CPOSR3>OLDIES  (ALL  access)
12  records  in  this  directory,  22  total  records  out  of  quota  of  0.

2  Files.

R E S U M E  M E M O

4  Di rec tor ies .

O P E R A S  S Y M P H O N I E S  Q U A R T E T S

OK, UNASSIGN MT1
Device  MT1  Released.
OK,

Other Magnetic Tape Operations
Prime supplies a variety of utilities for carrying out other magnetic tape operations.

ARCHIVE Allows you to archive files from disk to tape and restore them from tape to
disk. Automatically generates an online catalog of archived files.

TRANSPORT Allows you to transfer files, via magnetic tape, from one Prime installation to
another.

MAGNET Allows you to transfer files, via magnetic tape, between Prime systems and
other vendors' systems.

Consult the Data Backup and Recovery Guide for more information.

Fifth  Edition  18-9



PRIMENET

Prime systems are often connected in networks that allow users to share the resources of
many computers.

• Prime local area networks, RINGNET and LAN300, can connect several nearby
Prime systems and user terminals.

• Point-to-point connections can tie distant Prime systems and local area networks
together over dedicated communication tines.

• Prime systems can access both Prime and other vendors' computers connected to Packet
Switched Data Networks (PSDNs) tike TELENET™.

PRIMENET is a system of software and hardware that gives you easy access to all the
resources available on your network. PRIMENET handles all of your work on the network in
a transparent manner, you normally don't need to know about the physical connections
among networked systems, and you often don't even need to know which system you are
accessing.
This chapter introduces the basic PRIMENET user facilities. (For a complete discussion see
the User's Guide to Prime Network Services.)

Note
The discussion that follows often refers to local and remote systems. Except for LAN300 users,
the local system is the one your terminal is connected to (either directiy or over a dialup line). If
you are a LAN300 user, you can consider your local system to be the one to which you connect
when you give the NTS CONNECT command. Remote systems are other systems on your
network. (There can be both a local and several remote systems on a local area network.)
Whenever you make use of a remote system, PRIMENET handles the communication.

You make use of PRIMENET with four different facilities:

F a c i l i t y  D e s c r i p t i o n
Remote File Access While you are logged in to one system, you can access many of the files on

other systems in your network exacdy as if they were on your own system.
Remote Login You can log in to any system on your network if you have a login ID.

Fifth  Edition  19-1



PRIMOS User's Guide

NETLINK You can use this utility to access both Prime and other vendors' systems con
nected over PSDNs. You can also use NETLINK over all Prime network
types to supplement the capabilities of Remote File Access and Remote
Login.

File Transfer You can use this separately priced product to transfer files between Prime
Service (FTS) systems in a network. FTS adds significantly to the capabilities available with

the standard Remote File Access facility.

The capabilities of these facilities overlap to some extent. For example, you can transfer files
to and from remote systems using FTS, but in many cases you can also simply copy them
using Remote File Access. The following discussion gives you some guidelines about which
system to use whenever capabilites overlap in this way.

Remote File Access
Remote File Access is the most transparent of the PRIMENET facilities. Your System
Administrator can make certain disks from other systems on your network visible to your
local system. You can access file system objects on these disks exactiy as if they were on
your own system; you just use their pathnames.

Making disks visible to your system in this way is called adding disks. Adding a disk doesn't
affect the physical connection between the disk and the computer. It simply means that you
can work with a disk physically connected to a remote machine as if it were connected to a
local machine. For example, suppose your local system is connected in a network that
includes several remote systems. Your System Administrator has chosen to add four disks
located on these remote systems so that they are accessible to you via Remote File Access:
<ACCT1> and <ACCT2> on the system SYSE, <PAYRL> on the system SYSC, and
<GAMES> on the system MIS2. (Names like SYSE and MIS2 are established to identify
each of the machines on a network when the network is configured. They are called
systemnames or nodenames.)
You can attach to <ACCT2> just as if it were on your local system, with the command

OK, ATTACH <ACCT2>MFD

You can then list the contents of <ACCT2> with

OK,  LD

You also get the listing without first attaching:

19-2  Fifth  Edition



PRIMENET

OK,  LD  <ACCT2>@@

You can work with any of the file system objects contained in these directories exactly as
you would if they were on your own system. For example, you can edit the file
<PAYRL>MONTHLY>AUGUST with the command

OK,  ED  <PAYRL>MONTHLY>AUGUST

Note
You cannot initiate a phantom process on your local system while you are attached to a remote
disk. If you attempt this, you receive the error message Illegal remote reference.

As in the case of files on your local machine, you don't need to give the disk name when you
give a pathname. You can, for example, just give the command

OK, ED MONTHLY>AUGUST

However, remember how PRIMOS locates a top-level directory (in this case the top-level
directory is MONTHLY) when you omit the disk name. PREMOS searches each disk
beginning with logical device number 0 and attaches you to the first top-level directory that
matches the specified name. When remote disks are added, PREMOS searches all of the local
disks first, and then searches remote disks in the order in which they were configured on your
system. (You can discover this order with the STATUS DISKS command explained below.)
You can, therefore, safely omit the disk name for a remote file system object as long as you
are sure that the top-level directory name does not occur on any other local or added remote
disk. When top-level directory names are not unique, PREMOS may or may not find the right
one, depending on the order in which it searches the disks. If you are not sure, you are better
off using the disk name in your pathnames. Using the disk name in remote pathnames can
also give you significantiy faster access, because otherwise PRIMOS may have to search
through many disks to find the one you specify.

The STATUS DISKS Command
Use the STATUS DISKS command to find out which disks are available to you for Remote
(as well as local) File Access and the order in which PRIMOS searches them. STATUS
DISKS shows the names and logical device numbers of both local and remote disks. It also
shows you the names of the systems on which remote disks are located. For example,

OK,  STATUS  DISKS

Disk  Ldev  Pdev  System

STATS 3462
BOOKS 460
MISCEL 71063
OUTPUT 71061
ACCT2 SYSE
ACCT1 SYSE

Fifth  Edition  19-3



PRIMOS User's Guide

In the STATUS DISKS display, Disk is the name of the disk, Ldev is the logical device
number, and System is the systemname. The disks that have no systemname listed are on
the local system. (Pdev is the physical device number, which is normally not of concern to
you.)
This display shows four disks on the local system as well as the four remote disks that the
System Administrator has added. Remember that the STATUS DISKS listing gives you the
order in which disks are searched for top-level directories when you don't specify the disk
name in a pathname. In this case, the first disk to be searched is <STATS> (logical device 0),
and the last is <GAMES> (logical device 7).

Suppose, for example, that both ACCT1 and ACCT2 contain top-level directories called
PAYABLE. You can attach to <ACCT2>PAYABLE with the command

OK,  A  PAYABLE

because ACCT2 (logical device 4) is searched before ACCT1 (logical device 5). On the other
hand, to attach to <ACCT1>PAYABLE, you must give the whole pathname:

OK, A <ACCT1>PAYABLE

ACLs on Remote Systems
Your ability to work with file system objects on remote systems is still governed by ACL
protection, if ACL protection has been implemented for the remote system. For example, you
must have U access to a remote directory in order to attach to it. Note that X access to an EPF
on a remote system does not give you the right to execute the EPF. You need R access to
execute a remote EPF.

Copying Remote File System Objects
Users frequendy want to copy files or directories from remote systems to their local
directories. When the file system object that you want is on a disk that has been added to
your system, you can do this with the COPY command.
For example, you can copy the file <GAMES>BOARD>CHESS on system MIS2 to the
directory <MISCEL>MYGAMES on your local system with the following command:

OK, COPY <GAMES>BOARD>CHESS <MISCEL>MYGAMES>CHESS

Remember, to copy an ACL protected file system object, you need R access to the object.
When a file system object is on a remote disk that has not been added to your system, you
cannot copy it with the COPY command. In such a case, you may want to use FTS or
NETLINK to copy the file. These procedures are explained in the sections on NETLINK and
FTS below.

19-4  Fifth  Edition



PRIMENET

Adding Remote IDs
On some networks, the Network Administrator may restrict access to the disks on certain
systems. In such cases, your System Administrator may add disks from those systems so that
they are visible on your system. However, you still are not allowed Remote File Access to a
disk on a restricted system unless you also have a valid user ID on the restricted system. This
is called forced user validation.

Forced user validation protects the security of data on certain systems by limiting access
privileges. Those users who have a valid ID on a restricted system can have Remote File
Access to disks on that system. Those who don't have an ID on the system in question can
not have Remote File Access to its disks.

Even if you have a valid user ID on a remote system that forces user validation, you still
need to carry out one step in order to enable remote access to files on that system. You must
issue the ADD_REMOTE_ID command at some point during your terminal session. This is
called adding a remote ID. The command's format is

ADD_REMOTE_ID remote-ID [password] -ON systemname
[-PROMPT] [-PROJECT project-ID]

The arguments and options for this command are the same as those for the LOGIN command
(explained below in the section Remote Login), with one exception. With the -PROMPT
option, the command prompts you for the password instead of forcing you to enter it on the
command line.

remote-ID is a valid user ID that you have on the remote system specified by systemname.
You must supply any password or project-ID required for access to the remote system.

In essence, the ADD_REMOTE_ID command makes a list of user IDs that PRIMENET can
use when it attempts to access files on various restricted remote systems. You may have
remote IDs for as many as 16 different systems simultaneously, but only one for any given
remote system. For example, if you add the remote ID EARTH on SYSA and then later add
the remote ID AER on SYSA, AER replaces EARTH.

Note
The ADD_REMOTE_ED command does not actually establish a user ID for you on the remote
system. Only the System Administrator of the remote system can do this. When you try to
access a remote file on a restricted system, PRIMENET must supply a valid user ED to that
system. PRIMENET does this automatically for you. ADD_REMOTE_ID simply tellsPRIMENET which ID and passwords to use when it accesses a specific remote system for you.

As an example of the use of ADD_REMOTE_ID, assume that your local system is SYSP, but
that you also have a user ID, WATER, on SYSK on your network. Your System Administrator
has added several disks from the system SYSK so that you can have Remote File Access to
them, but SYSK is a restricted system that forces user validation for Remote File Access. You
can access the added disks, but first you must issue the ADD_REMOTE_ID command:

OK, ADD_REMOTE_ID WATER PASS -ON SYSK -PROJECT POETRY

Fifth  Edition  19-5



PRIMOS User's Guide

WATER is now available with the password PASS as a remote ID for accessing SYSK. This
ID remains available for the duration of your terminal session or until you remove it (with
REMOVE_REMOTE_ID, as described below).

Suppose, for example, that one of the added disks from SYSK is called <SONNET>. You can
now access the files on <SONNET> just as if they were on your own system. For example, you
can attach to the directory <SONNET>SHAKESPEARE with the following command:

OK, ATTACH <SONNET>SHAKESPEARE

You receive an error message if

• You have not previously issued the ADD_REMOTE_ID command
• You have added the wrong ID
• You do not have a valid ID on SYSK

OK, ATTACH <SONNET>SHAKESPEARE
Slave  validation  error.  MFD  (ATTACH)
ER!

If you have a different user ID on a remote system, you may find it useful to add that remote
ID even if the system does not restrict file access. For example, your remote ID may have
greater access rights than your local ID to files on the remote system. If you add the remote
ID, you gain the remote ID's access rights when you access files on the remote system.
For example, suppose the ACL protecting the directory <MUSIC>BAROQUE on remote
system SYSM is

.MGROUP  ALL
$ R E S T  L U R

Suppose your user ID PIANO on SYSM is included in the group .MGROUP, while your user
ID FLUTE on your local system is not. If you access a file in <MUSIC>BAROQUE from
your local system without first adding a remote ID, you have the access rights accorded to
FLUTE. In this case, FLUTE is a member of $REST and has only LUR rights. If you add the
remote ID PIANO, you get ALL access rights as a member of .MGROUP.
Because a remote ID is valid only for the duration of the login session, you may find it
convenient to incorporate the ADD_REMOTE_ID command in your LOGIN.CPL file if you
frequendy access remote disks on restricted systems. If you do this, use the ADD_REMOTE_ID
-PROMPT option. When -PROMPT is specified, ADD_REMOTE_ID asks for your password
on the remote system when the LOGIN.CPL executes. Thus, your password on the remote
system does not need to appear in the LOGIN.CPL file.

Examining Your Remote IDs
Use the LIST_REMOTE_ID command to examine the remote IDs you have currendy
established. The command format is

LIST_REMOTE_ID [-ON systemname]
19-6  Fifth  Edition



PRIMENET

If you give the -ON option, only the remote ID for systemname is listed; if you omit the -ON
option, all of your remote IDs are displayed. Passwords are never displayed. For example,

Pro jec t  id
OK,  LIST_REMOTE_ID
System User  ID

SYSB EARTH
SYSK WATER
SYSM FIRE
OK,

POETRY

Removing Remote IDs
Your remote ID list can contain a maximum of 16 remote IDs, one ID per system. If your list has
reached the 16-ID limit, you cannot add more remote IDs unless you remove at least one with the
REMOVE_REMOTE_ID command. (To list existing remote IDs, use the LIST_REMOTE_ID
command, explained above.)
The command format for REMOVE_REMOTE_ID is

REMOVE_REMOTE_ID -ON systemname

where systemname is the nodename of the system whose ID is to be deleted. If systemname is
not in the list, you receive the error message Not found.

Remote Login
You can have login IDs on several machines in a network. If you have a login ID on a remote
machine, you can log in to that machine using the -ON option of the LOGIN command. The
format is

LOGIN user-id [login-password] -ON systemname [-PROJECT project-id]

where systemname is the name of the system you want to log in to.
For security reasons, your System Administrator may disallow passwords on the login line. In
this case, PRIMOS prompts you for a password. If any of the systems on which you work
uses specific project names, you must supply the appropriate project-id when you log in.
Your administrator gives you any required project IDs when you receive your user ID.
You may be able to log in to one system on your network while you are still logged in to
another. This depends on how the System Administrator has configured the system you are
currendy logged in to. When you log in to the second system, PREMOS automatically logs
you out of the first.
When you log in to a remote system, PRIMENET establishes a connection to route input and
output between your terminal and the remote system. In fact, your terminal remains
physically connected to your local system, but PRIMENET routes your terminal input and
output so that you can work as if you had a direct connection to the remote system. This

Fifth  Edition  19-7



PRIMOS User's Guide

connection is called a virtual circuit. If you log out or fail to log in successfully, the
connection is broken. Your terminal is then left connected to your local machine, but not
logged in.
The following example shows remote login and logout.

OK,  LOGIN MYSELF -ON MIS2

MYID(user  33)  logged  out  Wednesday,  28  Oct  87  15:45:36.
Time  used:  06h  56m  connect,  03m  24s  CPU,  00m  21s  I/O.
PRIMENET  22.0.0  MIS2
P a s s w o r d ?  Y o u  t y p e  t h e  w r o n g  p a s s w o r d .
Invalid  user  ID  or  password;  please  try  again.

D i s c o n n e c t e d  f r o m  M I S 2  Yo u  a r e  c o n n e c t e d  t o  y o u r  l o c a l
O K ,  L O G I N  m y s e l f  - o n  M I S 2  m a c h i n e ,  b u t  n o t  l o g g e d  i n .
PRIMENET  22.0.0  MIS2
P a s s w o r d ?  Y o u  t y p e  t h e  r i g h t  p a s s w o r d .

MYSELF(user  6)  logged  in  Wednesday,  28  Oct  15:46:28.
Welcome  to  Primos  version  22.0.0
Copyright(c)  1987  Prime  Computer  Inc.
OK,

You do your work on MIS2.

OK,  LO

MYSELF(user  6)  logged  out  Wednesday,  28  Oct  87  15:55:09.
Time  used:  OOh  9m  connect,  00m  04s  CPU,  00m  21s  I/O.

W a i t . . .

Disconnected  from  MIS2
OK,  You  are  connected  to  local  machine  but  not  logged  in.

Network Status
You can find the names and states of all systems (or nodes) in the network by giving the
following command:

STATUS NETWORK
The following example shows the state of an eight-system network as it is displayed for a
local user on the SYSA system. The UP state means that the connection to the remote system
is working. The system to which you have logged in is listed first and shown by asterisks

19-8  Fifth  Edition



PRIMENET

OK, STATUS NETWORK

Ring  Network

Node S t a t
SYSA * * * *
SYSE Up
SYSB Up
SYSC Up
MIS2 Up
MIS1 Down
ENG3 Up
SYSW Down

r

OK,

When to Use Remote Login
You can log in remotely only to a system on which you have a valid user ID. Even if you do
have a valid user ID, remember that you may be able to use file resources on a remote system
via Remote File Access instead of logging in. You need to log in remotely when the disks on
a remote system have not been added to your local system and are thus not available via
Remote File Access.
You can also use remote login as an alternative to Remote File Access when your user ID on
the remote system has greater access rights than your user ED on the local system. Logging in
to the remote system allows you the greater access rights of your remote ID. (En these
circumstances you can also add the remote ID using the ADD_REMOTE_ID command, as
discussed above in the section, Adding Remote IDs.)
Remote login is also useful when you do a lot of work on a remote system. You can have a
different LOGIN.CPL, abbreviation set, prompts, and other custom features for each login
ID. If you do a different kind of work on each system, you can customize your user
environment differendy for each user ID.

Using NETLINK for Remote Access
The NETLINK facility allows you to connect both to Prime systems on your network and to
Prime and other vendors' systems over a public data network.
NETLINK allows you to

• Transfer text files across networks
• Set data transmission characteristics
• Display the status of your connection
• Connect to and use a maximum of six different remote systems at the same time
• Specify the various fields of the connect packet when data transmission characteristics

of another vendor's system differ from those of your local system

Fifth  Edition  19-9



PRIMOS User's Guide

Only NETLENK's basic usage is presented in this section. For a list of all NETLINK
commands and error messages, see the User's Guide to Prime Network Services.

Basic NETLINK Usage
The basic steps to using NETLINK are

1. Enter NETLINK command mode by issuing the NETLINK command. The format is

NETLINK

When you enter command mode, the NETLINK @ prompt appears.
2. Connect to the remote system by issuing the C subcommand. The format is

C address

address is either the host address assigned by the public data network or a
PRIMENET system nodename.
When a connection has been established, the following message appears:

address  Connected
PRIMENET  Rev  22.0.0  systemname

Log in to the system as you would normally, entering any passwords, as required.
3. Once you finish a terminal session, log out as you would normally. The following

message appears:

address  Disconnected
8

When a connection to a remote host has been terminated by logging out, command
mode is reentered and the @ appears. You may now connect to another site or return
to PRIMOS on your local system. To return to PRIMOS on your local system, enter
the following command:

@  QUIT

NETLINK Example
The following example illustrates a basic terminal session.

OK,  NETLINK
[NETLINK  Rev.  22.0]

@ C  SYS9

SYS9  Connected
PRIMENET 22.0  SYS9
LOGIN HOBBITT
P a s s w o r d ?  P a s s w o r d  i s  n o t  e c h o e d  o n  t e r m i n a l .

19-10  Fifth  Edition



PRIMENET

HOBBITT  (user  28)  logged  in  Friday,  07  Dec  88  10:45:32.
Welcome  to  PRIMOS  version  22.0
Last  login  Friday,  07  Dec  88  10:38:28.

OK,

OK, LOGOUT

HOBBITT  (user  28)  logged  out  Friday,  07  Dec  88  10:46:44.
Time  used:  OOh  01m  connect,  00m  01s  CPU,  00m  01s  I/O.

W a i t . . .

SYS9  Disconnected

@ QUIT

OK,

Alternate NETLINK Usage: The -TO Option
You may use the following option on the NETLINK command tine:

-TO address

This bypasses NETLENK's @ prompt, and connects you directiy to address. You can then log
in, do your work, and log out. After logging out, you return directiy to your original system,
without getting the @ prompt or needing to give the QUIT command.
For example,

OK,  NETLINK  -TO  SYS9
[NETLINK  Rev.  22.0]

SYS9  Connected
PRIMENET  22.0  SYS9
LOGIN HOBBITT
P a s s w o r d ?  P a s s w o r d  i s  n o t  e c h o e d  o n  t e r m i n a l .

HOBBITT  (user  28)  logged  in  Friday,  07  Dec  88  10:57:56.
Welcome  to  PRIMOS  version  22.0
Last  login  Friday,  07  Dec  88  10:55:36.

OK,

OK, LOGOUT

Fifth  Edition  19-11



PRIMOS User's Guide

HOBBITT  (user  28)  logged  out  Friday,  07  Dec  88  10:58:08.
Time  used:  OOh  00m  connect,  00m  01s  CPU,  00m  00s  I/O.

Wait.  .  .

SYS9  Disconnected

OK,

The -MODE REMOTE_ECHO Option
If you use ECL or the EMACS screen editor remotely, you may also wish to use the -MODE
REMOTE_ECHO option to the NETLINK command. This option enables you to receive
screen echoes faster and makes work at the keyboard easier.

You enter the option in one of two places:

• On the NETLENK command line. For example,

OK, NETLINK -TO SYSZ -MODE REMOTE_ECHO

• Following the @ prompt. For example,

@ C SYSZ -MODE REMOTE_ECHO

This option is explained more fully in the User's Guide to Prime Network Services.

The NETLINK HELP Facility
You can get a brief summary of NETLINK subcommands and options by typing HELP in
response to the @ prompt. For example,

OK,  NETLINK
[NETLINK  Rev.  19.3.2]

@ HELP

Following the HELP display, you receive another @ prompt and can continue with your
NETLINK session. More information on the NETLENK HELP facility appears in the User's
Guide to Prime Network Services.

When to Use NETLINK
Whenever you want to connect to a public data network, you must use NETLINK. Whether
you use NETLINK to connect to systems on your own network depends on whether you need
NETLINK's extra capabilities. You can, of course, log in to remote systems on your network
via remote login without using NETLINK. However, you can only use remote login with one
system at a time. Even if your local system permits you to log in remotely while you are still
logged in locally, you are automatically logged out of your local system.

19-12  Fifth  Edition



Pfl/ME/VET

When you use NETLINK, you can connect to another system and still remain logged in to
the local system. This means that you can connect to a remote system, do your work, and
return to the local system without having to log in again. NETLINK also allows you to
establish as many as six connections with other systems simultaneously. (See the User's
Guide to Prime Network Services for details.)

Finally, you may find it easier to use EMACS and ECL over the network if you use the
NETLENK -MODE REMOTE_ECHO option.

Transferring Files Between Systems With FTS
The FTR command provides a method of transferring files between Prime systems that are
connected via PRIMENET links. The FTR command is part of the File Transfer Service
(FTS), which is a separately priced product.
To transfer a file, you submit a request that detatis all the necessary information for the
transfer to occur. You can make a request even when the communications link between the
two systems is not operational or the remote system is down, because requests are queued on
the local (requesting) system.

Once you have submitted a request for a file transfer, you may display or cancel the request.
The following sections explain these operations briefly. Further information is available in
the PRIMOS Commands Reference Guide and in the User's Guide to Prime Network
Services.

Access Rights
In order for full FTS to work correctiy, you need the following access rights for your user
ID:

A c c e s s  F u n c t i o n
LUWR  to  the  source  directory  Sending  files
ALURW to the destination directory Receiving files

In addition, the FTS Server needs access rights. The FTS Server is a special phantom that
performs your FTS work for you. The server needs the following rights:

A c c e s s  D i r e c t o r y
DALURW  Directory  containing  source  file
DALURW  Directory  to  receive  file
U  All  higher  directories  in  source  and  destination  pathnames

The user ID of the FTS Server is set by your System Administrator. Find out from your
Administrator the user ID of your system's FTS Server so that you can grant the server
appropriate access rights.
To keep your main directory private, you can create a special subdirectory for your transfers
and give the FTS Server the necessary rights to this directory only.

Fifth  Edition  19-13



PRIMOS User's Guide

Source and Destination Sites
File transfers take place between sites. A site (also called a system or node) is a single
computer, identified by a unique sitename; Prime sites normally use their PRIMENET
systemnames as sitenames. Files are transferred from a source site to a destination site. One
of these must be your local site; the other is usually a remote site. (FTS cannot transfer files
between two remote sites in a single step.)
The following discussion assumes that you are using FTS between Prime machines that have
been configured using the FTGEN command, explained in the PRIMENET Planning and
Configuration Guide. To transfer files to or from sites that are not configured, see the User's
Guide to Prime Network Services.

Temporary Destination Files
When FTS transfers a file, the receiving system initially creates the destination file with a
temporary filename. FTS prepends the letters T$ to the destination filename to create the
temporary filename. The name may be truncated to ensure that it does not exceed 32
characters. To display the temporary filename enter the LD command during the transfer.

Progress on creating and renaming the file is recorded in the user's log file. On successful
completion of the transfer, FTS attaches to the destination directory, deletes any existing file
with a name that matches the destination filename specified by the user, and renames the
temporary file, giving it the requested destination filename.

Request Names and Request Numbers
Each request has two means of identification associated with it: a request name and a unique
request number. FTS assigns the number when you submit the request. You can use either the
name or the number to identify the request. The name is either the name of the file to be
transferred or a specific name that you assign to the request when you submit it. You usually
refer to the request by its name. You may use the unique request number to distinguish
between two requests that have the same name.

Sending a File
To send a file to another Prime computer, use the FTR command with the following format:

FTR source-pathname destination-pathname -DSTNJSITE sitename

source-pathname is the pathname of the file to be sent. You may give just a filename if the
file is in your current directory.
destination-pathname specifies the name to give the file at the destination site after it has first
been successfully transferred to a temporary file. Directories specified in the destination
pathname must already exist for the transfer to work. FTS does not create directories.

19-14  Fifth  Edition



Pfl/MEA/ET

Note
If die pathname for a source file or destination file requires directory passwords, include the
passwords in the pathname. Put the whole pathname within single quotation marks. For example,

'MARPLE  CLUE>EVIDENCEf

-DSTN_SITE sitename specifies the name of the destination site.
FTR displays the following response to your request:

Request request-name (request-number) submitted.

request-number is the unique identification number assigned by FTR. request-name is the
source filename.
For example, assume you are on SYS2. The following example shows an FTR send request:

OK, FTR LINDEN>SQUARES.FTN ELM>SQUARES.FTN -DS SYS9
[FTR  Rev.5.0  Copyright  (c)  1986,  Prime  Computer,  Inc.]
Request  SQUARES.FTN  (177777)  submitted.
OK,

In this example, FTR queues a copy of the file SQUARES.FTN in the directory LINDEN to
send to system SYS9, for deposit in the directory ELM under the name SQUARES.FTN.
This file is initially transferred to the temporary file T$SQU ARES .FTN and on successful
completion of the transfer is renamed to SQUARES.FTN. The request name is the source
filename, SQUARES.FTN. The unique request number is 177777. Single quotation marks
are required around the pathname containing the password.

Obtaining  a  File
To get a file from another Prime computer, use the FTR command in the following format:

FTR source-pathname destination-pathname -SRC_SITE sitename

source-pathname and destination-pathname are used as defined above in the section, Sending
a File.
-SRC_SITE sitename specifies the name of the site where the desired file is stored.
For example, assume you are on SYS2. The command

OK, FTR PEOPLE>LIST MYDIR>MYLIST -SRC_SITE SYS6

copies the file PEOPLE>LIST on SYS6 to the directory MYDIR on SYS2. The new copy of
the file is MYLIST. The request name is the source filename, LIST.

Fifth  Edition  19-15



PRIMOS User's Guide

Printing a File at a Remote Site
To print a hard copy of a file on a printer at another site, use the following format:

FTR source-pathname -DSTN_SITE sitename -DEVICE LP -DSTN_USER name

-DEVICE LP is the option that instructs FTS to print the file on a line printer at the remote
site specified by -DSTN_SITE sitename.

-DSTNJUSER name specifies the name of the person to receive the printout at the remote
site. The file is printed with the name of the FTS Server (set by your System Administrator)
on the first line of the banner, where your user ID usually appears. The name specified after
-DSTNJUSER appears on the second line of the banner of the printed file, name need not be
a user ID.
For example, assume you are on SYSA. The command

OK, FTR STUART>LETTER -DSTN_SITE SYSF -DEVICE LP -DSTN_USER JUDY_JONES

causes the file LETTER to be printed (at a line printer) on SYSF. The first line of the banner
is the name of the FTS server, the second line is JUDY_JONES. The request name is
LETTER.

Deferring the Transfer of a File
You can delay the transfer of a file by specifying the -DEFER option followed by date-time
when you submit your request. -DEFER has the following format:

FTR -DEFER date-time

date-time is in the format yy-mm-dd.hh:mm:ss. If you only wish to defer the file's transfer to
a time later in the same day, you can leave out the year, month, and day and just specify the
time in 24 hour format. For example,

OK,  FTR  PEOPLE>LIST  MYDIR>MYLIST  -SRC_SITE  SYS6  -DEFER  18:00

This file would be transferred at 6:00 p.m. on the same day the request was made.

Setting the Relative Priority of Your Request
You can set the relative priority for your transfer request with the -PRIORITY option. The
System Administrator sets the upper and lower limits for priorities, which normally range
from 1 (lowest) through 7 (highest). The default value is usually 5. For example, if you wish
to transfer a file with highest priority, specify

OK,  FTR MYDIR>LETTER YOURDIR>LETTER -DSTN_SITE SYS2 -PRIORITY 7

FTS does not process a lower priority request until it has processed requests submitted with a
higher priority. It is possible for lower priority requests to remain in the queue for long _^
periods of time if other users are continually submitting higher priority requests.

19-16  Fifth  Edition



PRIMENET

The System Administrator can disable the -PRIORITY option or restrict access to some
priorities to allow for urgent requests. When the -PRIORITY option is disabled, FTS ignores
priority settings and services the queue in the order in which users submit requests.

Checking the Status of Requests
Use the -STATUS and -DISPLAY options of the FTR command to check the status of your
file transfer requests.

Using the -STATUS Option: Once you have submitted a request you can check its
status with the following command:

FTR  -STATUS  [  S  re^st-name  \1i t. request-number J j

The -STATUS option returns a brief, one-line report for each of your file transfer requests
identified by request-name or request-number. If you omit the request name or number, you
receive a report on all of your current requests. The report has the following form. (Certain
items are not displayed unless they pertain to the current request.)

date.time  user-id  request-name(request-i)  (Queue-i  (priority))Status  -category

date.time is in the form yy-mm-dd.hh:mm:ss. Status -category is one of the following:

C a t e g o r y  M e a n i n g
waiting  The  request  is  in  the  transfer  queue,  but  has  not  yet  been  trans

ferred.
transferring  The  transfer  is  in  progress.
put on hold by user A request is being retained in the transfer queue. (The User's
put on hold by operator Guide to Prime Network Services explains how to hold files.)
put on hold by FTS
aborting  An  active  transfer  request  cannot  be  executed.

If a defer symbol (D) follows the status category of a request, a defer time is supplied with
that request.

For example,

OK, FTR -STATUS
[FTR  Rev.  5.0  Copyright  (c)  1986,  Prime  Computer,  Inc.]
87-02-10.14:31:04  LINDEN  SQUARES.FTN  (177777)  (QU$I(5))

Status  -  transferring
OK,

In this example, LINDEN has one request, named SQUARES.FTN, with a priority of 5. It is
being transferred.

Fifth  Edition  19-17



PRIMOS User's Guide

Using  the-DISPLAY Option:  You  can  ask  for  a  full  report  on  the  status  of  your
requests, with the following command:

1 J  »9uestr«ame \~]{ request-number j

Specifying request-name displays full information on all current requests with this name.
Specifying request-number displays full information on the request with this number. If you
omit request-name and request-number, FTR displays detailed information on all of your
current requests.

The display takes the following form. (Items are displayed only if they pertain to the current
request.)

Category
Request
User
Queue
Queued

P r i o r i t y
Last  attempt

Current  time
Defer  time
Source  file
Source  file  size
Destination  file
Source  site
Destination  site
Request  log  file

Log message level
Source  user

Source  file  type
Destination  file  type  Type  of  destination  file.
Destination  user

Information on the Request
Request name (request number).
User ID of submitter.
Queue name where the request is queued.
Date and time the request was submitted, and die status of the
request;  Status  may  be  waiting,  transferring,  or  put  on
hold by either the user or the operator.
The relative priority of the transfer request.
Date and time of the most recent transfer attempt, and the number of
transfer attempts.
Current date and time.
The date and time the request is to be processed.
Source pathname.
Number of bytes; displayed only if the source file is on the local site.
Destination pathname.
Source site name.
Destination site name.
Pathname of log file; not always displayed. FTR must have Write
access to create a log file.
Level of detail entered in the request log field.
A user ID (or another name) at the source site to be associated with
the transferred file; not always displayed; useful when notifying a
user at a remote site about a transfer.
Type of file being transferred.

Options

19-18  Fifth  Edition

A user ID (or another name) at the destination site to be associated with
the transferred file; not always displayed; useful when printing files at
remote sites or when notifying a user at a remote site about a transfer.
List of active options.



PRIMENET

For example, assume your user ID is LINDEN on SYS7:

OK, FTR SQUARES.FTN ELM>SQUARES.FTN -DU OAK -DS SYS9
-LOG  LINDEN>LOG  -MSGL  TRACE  -DEFER  88-12-12.11:00:00
[FTR  Rev.5.0  Copyright  (c)  1986,  Prime  Computer,  Inc.]
Request  SQUARES.FTN  (177777)  submitted.
OK,  FTR  -DISPLAY
[FTR  Rev.5.0  Copyright  (c)  1986,  Prime  Computer,  Inc.]

Request SQUARES.FTN  (177777)
User LINDEN
Queue QU$1
Queued 88-12-12.10:25:57  Sta tus -  waiting
P r i o r i t y
Last  attempt 00-00-00.00:00:00  Attempts  ■
Current  timei 88-12-12 .10 :26 :05
Defer  time 88-12-12 .11 :00 :00
Source  file <FOREST>LINDEN>SQUARES.FTN
Source  file s i z e 8  6  bytes.
D e s t i n a t i o n fi l e ELM>SQUARES.FTN
Source  site SYS 7
D e s t i n a t i o n s i t e SYS 9
Request  log fi l e <FOREST>LINDEN>LOG
Log  message l e v e l TRACE
Source  user LINDEN
D e s t i n a t i o n user OAK
Source  fi le t ype -  SAM
D e s t i n a t i o n fi l e t y p e  -  S A M
Options  :-
BINARY,  COPY,  NO DELETE
OK,

Logging Request Events
You can create an automatic log of file transfer request events by specifying the -LOG
option, in the format

-LOG pathname

when you submit a request. FTR deposits logging information, including information
regarding the progress of creating and renaming the temporary file, in pathname on the
system originating the request. If pathname already exists, the logging information is
appended to the end of the file.
For example,

OK,  FTR  SALLY>INFO  WILLIAM>INFORM  -DS  SYSG  -LOG  SALLY>FTR.LOG

Fifth  Edition  19-19



PRIMOS User's Guide

If the transfer of INFO is successful, the entries in the log file FTR.LOG look like this:

15.55.13
1988.
15.55.14
15.55.14
15.55.14
15.55.30
Complete
15.55.30
15.55.30

[1.1]  Request  INFO  (954232)  started  Friday,  December  5,

[1.1]  Submitting  user  is  SALLY.
[1.1]  Local  file  is  <DISKZ>SALLY>INFO.
[1.1]  Temporary  file  is  <DISKZ>SALLY>T$INFO.
[1.1]  RESULT:  Transfer  Terminated:  Satisfactory  and

[1.1]  File  successfully  renamed.
[1.1]  Request  INFO  (954232)  finished.

You can increase the degree of detail entered in your log file if you wish. Specify on the
FTR command line the -MESSAGE_LEVEL option with one of the following arguments:
DETAILED,  STATISTICS,  TRACE.  You must  also  specify  the  -LOG option.  More
information on the -MESSAGE_LEVEL option appears in the User's Guide to Prime
Network Services.

Requesting Notification About Transfers
You may request that notification about the progress of a submitted request be sent to a
source and/or a destination user. Use the notify options, given below, both for transferring
and fetching operations.

Option
-SRC_NTFY

-SRC_USER user-ID
-DSTN_NTFY

-DSTN USER user-ID

Description
Notifies die source user when the file transfer starts and ends. In the
case of a receive, you must include the following option to inform
FTR whom to notify.
(Required with -SRC_NTFY fetch.)
Notifies the destination user when the file transfer starts and ends. In
the case of a send, you must include the following option to tell FTR
whom to notify.

(Required with -DSTN_NTFY send.)

With the following command line, user LINDEN on SYS2 invokes FTR to transfer file
SQUARES.FTN to ELM>RESULTS.FTN on SYS9, and requests that notification be sent to
both LINDEN and ELM:

OK, FTR SQUARES.FTN ELM>RESULTS.FTN -DS SYS9 -SN -DN -DU ELM

In the next example, user LINDEN on SYS2 fetches file SUM.FTN from ELM on SYS9,
names it RESULTS.FTN, and requests that notification be sent to both LINDEN and ELM:

OK,  FTR  ELM>SUM.FTN  RESULTS.FTN  -SS  SYS9  -DN  -SN  -SU  LINDEN

19-20  Fifth  Edition



Pfl/MEWET

Note
The options -SRC_NTFY and -DSTN_NTFY use the PRIMOS message facility to tell users of
a successful transfer. However, if the specified user is not logged in or has set MESSAGE status
to -REJECT, then notification is not received. Using the -LOG option instead of, or in addition
to, -SRC_NTFY and -DSTN_NTFY provides a permanent record of the operation.

Canceling Requests
If you have submitted a request that is currendy waiting in a queue to be transferred, you
may cancel the request with the following command:

FTR  -CANCEL  S  ^est-name  \
L request-number J

For example, if the request you want to cancel is named NEWS and the request-number is
5684210, either of the following commands cancels the request:

FTR -CANCEL NEWS
FTR  -CANCEL  5684210

You receive the following message:

Request  NEWS  (5684210)  cancelled.

You cannot cancel requests that are in the process of being transferred.

The FTR Help Facility
You can request a brief summary of FTR options at the terminal by giving the FTR
command without arguments or options:

FTR

For a list of subjects on which you can get a full help display use the -HELP option alone:

FTR  -HELP

You can get information on any subject with the format

FTR -HELP subject

Fifth  Edition  19-21



PRIMOS User's Guide

Requests on Hold
Under certain circumstances, FTS automatically puts a request on hold. If you receive a
message to this effect or an FTR -DISPLAY screen shows that your request is on hold, you
may wish to do one of the following:

• Give the command

FTR -CANCEL S r^uest-name \
L request-number J

This command cancels the request, and you can resubmit it.
• Give the command

FTR -RELEASE J muest-mme \L request-number J

This command instructs FTR to try the transfer again. Try to determine what caused the
failure, and resubmit a corrected request.

If you requested that a log file be generated, you can look at the log to find out why the file
is being held. Either you or the operator can hold a file intentionally with the -HOLD option.
More information on this feature is given in the User's Guide to Prime Network Services.

Other Options
The FTR command has other options that allow you to modify, abort, and otherwise control
your requests. Full information on these options (as well as on the -HOLD and -RELEASE
options) appears in the PRIMENET Guide.

When to Use FTR
If you want to copy a file from a remote disk that has been added to your system, you can
often do so simply by using the COPY command. If the file you want is on a disk that has
not been added to your system, or if it is on a system that forces user validation on which you
don't have a valid user ID, you can use FTS. Remember, though, that you must have
sufficient ACL rights to the file or destination directory. FTS also automates the file transfer
process. If, for example, the remote system is down, FTS can automatically retry your
request later.

19-22  Fifth  Edition

.-



The Condition Mechanism

r

PREMOS has a condition mechanism, which is activated when any executing process
encounters certain unusual events. These events (or conditions) fall into one of three
categories:

• Software-puzzling situations: illegal addresses, end of file encountered while reading
data, and so on

• Hardware and arithmetic exceptions: numbers too large or too small for the computer to
handle, attempts to divide by zero, program too large for its allotted space, and so on

• External occurrences: situations not directiy controlled by the executing process, such as
the use of the BREAK key from the user's terminal

PREMOS defines many such conditions. Some examples are

C o n d i t i o n  D e fi n i t i o n
ACCESS_VI0LATI0N$ Process has attempted to read, write, or execute in a segment to

which it has no access.
A R I T H $  A r i t h m e t i c  e x c e p t i o n .
STACK_OVF$  Process  has  overflowed  its  stack  segment.
QUIT$  User  has  typed  |  Break  |  or  |  Control  1  rp~]  at  terminal.
ILLEGAL_INST$ Process has tried to execute an illegal instruction.
ENDFILE (file)  End  of  file  encountered  while  a  PL/I  file  was  read.

For a complete list of these conditions, see Appendix D. Full information on the condition
mechanism appears in the Subroutines Reference III: Operating System.

Using the Condition Mechanism
The condition mechanism's goal is either to repair the problem and restart the program or to
terminate the program in an orderly manner. To achieve this goal, the condition mechanism
activates diagnostic or remedial subroutines (or PL/I begin blocks) called on-units.

Fifth  Edition  20-1



PRIMOS User's Guide

Users writing in FORTRAN IV, FORTRAN 77, PL/I, or PMA can define their own on-units
within the procedures for which they are intended. However, all users are automatically
protected by PRIMOS system on-units. When an error condition occurs, the condition
mechanism looks for on-units within the executing procedure. If it finds none or if the
procedure's on-units call for further help, the condition mechanism searches first through any
calling procedure's on-units and then through the system's on-units, activating the first
appropriate on-unit it finds.

The System Default On-unit
Of all the system on-units, the system default on-unit is the one you are most likely to
encounter. This on-unit displays a message in the following format and then returns you to
PRIMOS command level:

Error:  condition  condition  raised  at  address
additional  information

You may then take any one of the following actions:

• Give the START command. The condition mechanism tries to resume mnning the
program from the point at which the condition was raised.

• Give the DUMP_STACK command. This command prints a stack dump, which traces
the sequence of calls and returns by which the program reached its current state. The
stack dump can be displayed at the terminal or written to a file, as you prefer. If you are
familiar with Prime machine architecture, you may find that the DUMP_STACK
command gives you enough information to solve your problem. (For details, see the
PRIMOS Commands Reference Guide.) You may START a program again after
dumping the stack.

• Run the program under DBG. (The program must be compiled with the -DEBUG
option.) If the DUMP_STACK command did not provide enough information to solve
the problem, this is probably the best action to take.

• Give the RELEASE_LEVEL command to release the errant program. You remain at
PRIMOS command level and can give any PRIMOS command you choose.

Note
If you invoke the system default on-unit for a process running as a phantom or Batch job, the
condition mechanism writes the error message into the job's command output file and then logs
out the process.

Writing On-units
You can write your own on-units. These can be tailored to the programs and procedures for
which they are written. For more information, see the Subroutines Reference III: Operating
System.

20-2  Fifth  Edition



Appendices



Glossary

This  glossary  defines  the  most  important  terms and  concepts  mentioned  in  the  PRIMOS
User's Guide.

absolute pathname
A pathname that begins with a diskname.

access category
A file system object that contains only an ACL. An access category can protect any number of file
system objects in the same directory.

access control list
See ACL.

access right
A user's right to carry out a specific operation on a file system object. For example, a user with
Read (R) access to a file can read the file.

ACL
A list of users and their access rights, also called an access control list. When you establish an ACL
for a file system object, the ACL controls access to the object.

active
Designates an EPF that has been suspended without mnning to completion and remains mapped to
the user's address space. You can often restart an active EPF with the START command.

active window
Specifies the time span when a batch queue is active. Jobs in a batch queue are only executed
during the queue's active window.

adding disks
Making disks on remote systems available for remote file access.

address space
Memory area available to a user or process.

addressing mode
Specifies how a program calculates memory addresses. You must compile programs using an
addressing mode compatible with the linking utility that you use to link them.

auto speed detect
Allows PRIMOS to detect the baud rate of a user's terminal automatically.

Fifth  Edition  A-1



PRIMOS User's Guide

basename
The first component of an objectname. Objectnames often have two components, a basename and a
suffix, separated by a period. For example, PROGRAM is the basename in the two-component
objectname PROGRAM.BEN.

Batch processing
A system for executing programs without tying up user terminals. Programs submitted to the Batch
system are placed in queues to await execution. Batch processing can control the priority, time
allotted, and other characteristics of execution in order to use system resources efficiently.

Batch queue
A list of programs awaiting execution under control of the Batch system.

binary file
In general, a file whose contents cannot be interpreted as character data. In programming, an object
file is often called a binary file.

buffer
An area of memory used for temporary storage of data. Buffers are frequendy used to hold data
being input from or output to a device.

character data
Data that consists of letters, numbers, and other symbols as well as control characters. Control
characters are special characters that often cannot be displayed on a terminal screen or printed on a
printer. Many control characters can be generated by pressing | Ctrl | in combination with another
key at the keyboard. Control characters are often used to control display devices and printers.

COMI file
See command input file.

command argument
An element of a command line that specifies something to be acted upon by the command.
Arguments are usually pathnames of file system objects or identifying names such as a user ID.

command environment
The part of PRIMOS responsible for interpreting commands, invoking and suspending the
requested programs, and displaying prompts. The command environment maintains information
about the status of each program invoked.

command environment depth
The maximum number of command levels allowed in a user's command environment.

command environment limits
Limits on the number of command levels, program invocations per command level, and memory
segments available to a user.

command history
In ECL, a set of up to 200 previously entered command lines that remain available for editing and
resubmittal.

command input file
A text file containing a sequence of PRIMOS commands. When you submit a command input file
with the COMINPUT command, PRIMOS executes the sequence of commands. Also called a
COMI file.

command level
PRIMOS and interactive subsystems are at command level when they are able to accept user
commands. PRIMOS and subsystems usually display prompts to indicate that they are at command
level. In PRIMOS, command level also refers to the number of programs a user has simultaneously
suspended. When no programs are suspended, the user is said to be at command level 1. With each
suspended program, the user's command level increases by 1.

~ >

A-2  Fifth  Edition



G/ossary

command line
A string consisting of commands, arguments, and options, terminated by a I Return |, that a user
submits to PRIMOS or a subsystem.

command output file
See COMO file.

command procedure language
See CPL.

command processor
The part of PRIMOS that interprets command lines.

COMO file
A file that records terminal input and output. Also called a command output file.

compiler
A utility that converts a program source file written in a specific programming language into an
object file.

condition mechanism
A part of PRIMOS that handles errors and other interruptions to executing programs.

CPL
A language for writing programs consisting of PRIMOS commands and CPL directives. CPL
directives control the flow of command execution, pass command line arguments, and carry out
other functions typical of high-level programming languages. Also called Command Procedure
Language.

current attach point
The directory in which PRIMOS locates a user for the purpose of file system references. PRIMOS
interprets objectnames and relative pathnames as beginning with the current attach point.

current directory
See current attach point.

current line
When editing a file with the ED text editor, the current line is the line of the file to which the edit
pointer currendy points. In INPUT mode, text is added at the current line.

DBG
The Prime Source Level Debugger. To use the debugger, you must compile your programs with the
-DEBUG option.

debugging
The process of finding and correcting programming errors. You can use the DBG utility to aid you
in debugging programs.

default
A value or setting that is used unless the user explicitly specifies something else.

default protection
ACL protection that a file system object receives from the directory that contains the object. A file
system object is default protected unless you explicidy protect it with a specific ACL or access
category.

delimiter
In ED, a character used to mark the beginning or end of a literal string in a command line.

destination
A name used to specify a printer to the SPOOL command. Use the destination as an argument to
the -ATTRIBUTE option.

Fifth  Edition  A-3



PRIMOS User's Guide

device
A mechanical device used for input and output, such as a tape drive, disk drive, or terminal.

directive
In CPL, a statement used to control program flow, pass command line arguments, and carry out
other programming functions. CPL directives begin with &.

directory
A file system object that contains a list of names of other file system objects, information about
their characteristics (such as date and time last modified), and information that PRIMOS can use to
locate them. In effect, a directory functions as an index to a group of file system objects.

directory tree
The hierarchy of subdirectories and other file system objects below a given directory in the
PRIMOS file system.

diskname
A name that identifies a logical disk in file system operations. A diskname is the first element of a full
pathname. In the pathname, the diskname appears between angle-brackets in the format <diskname>.
For example, in the pathname <MUSIOSONATAS>MOZART, MUSIC is the diskname.

disk number
The logical device number of a disk. When PRIMOS searches disks for a top-level directory, it
searches in disk number order.

disk volume
See disk.

disk quota
Limit on the amount of disk space that a directory can occupy.

disk
In PRIMOS, disk, partition, logical disk, and disk volume are all used to refer to a set of mechanical
disk surfaces that PRIMOS treats as a single logical unit. Disk also refers to a physical platter in a
magnetic disk storage pack, but PRIMOS users work with logical rather than physical disks.

dynamic runfile
See EPE

echo
The display of characters on the terminal screen as they are typed at the keyboard.

ECL
The command line editor. Allows users to edit, save, and resubmit command lines in PRIMOS and
in some subsystems. Editing features include searching, deleting, copying, and moving of
command line text.

ED
A line oriented text editor. Used for creating and modifying text files.

empty line
In ED, a line consisting of a single carriage return. Used for switching between INPUT and EDIT
modes.

EPF
A runfile created with the BEND linking utility. PRIMOS can map EPFs to any available memory
space, so that several EPFs can be maintained in a user's memory space at once. EPF names use the
.RUN suffix. EPFs are also called executable program formats or dynamic runfiles.

erase character
A character that deletes the preceding character from a command line when the command line is
processed. The default erase character for PRIMOS and many subsystems is the double quotation
mark (").

A-4  Fifth  Edition



G/ossa/y

error prompt
A prompt displayed by PRIMOS or a subsystem when a command does not execute to completion.
ER! is the default PRIMOS error prompt.

executable file
See runf ile.

executable program format
See EPF.

file
An organized collection of data, stored on disk or another peripheral storage medium. Each file is
identified by a filename. For PRIMOS users, the file is the basic unit of organization of data in the
file system.

file system
The logical organization of data stored on disk. The PRIMOS file system is hierarchically
organized. PRIMOS users can manipulate information using the logical organization of the file
system and need not concern themselves with the physical locations of data.

file system object
A file, directory, access category, or segment directory in the PRIMOS file system.

file transfer service
See FTS.

file-unit
A channel through which all input to and output from a file takes place. File-units are identified by
octal numbers.

filename
A name that identifies a file in the PRIMOS file system. Filenames can have from 1 to 16 components,
separated by periods. Filenames often have two components: a basename that identifies the file's
contents, and a standard suffix that identifies the file's function. For example, COUNT.C identifies the
source code of a C language program called COUNT, and COUNT.RUN identifies the executable file.

forced user validation
To require validation of a user's ID on a remote system for remote file access. If you want to use remote
file access on a remote system that forces user validation, you must have a valid user ID on the remote
system, and you must identify that ID to your local system with the ADD_REMOTE_ID command.

form name
A name used to specify a paper type to the SPOOL command. Use the form name as and argument
to the -ATTRIBUTE option.

FTS
A utility for transferring files between Prime systems connected via PRIMENET. FTS queues
transfer requests and processes them automatically so that you can continue to work or even log off
while you wait for the transfer.

full pathname
See ordinary pathname.

function
A routine that returns a value. Command functions are functions that you can call from a PRIMOS
command line using the format [function-name]. The PRIMOS command processor substitutes the
returned value for the function call when it processes the command line.

global variable
In PRIMOS, variables that take their values from a global variable file. Once they are defined in a
global variable file, global variables are accessible from PRIMOS command level, in abbreviations,
to CPL programs, to command input files, and to programs in some high-level languages.

Fifth  Edition  A-5



PRIMOS User's Guide

group name
A name for a group of user IDs. Group names begin with a period (.), for example, .STAFF. You
can use a group name in an ACL to grant the same rights to all members of a group.

IAP
See initial attach point.

initial attach point
The directory in the file system to which you are attached when you log in. Also called the origin
directory.

interactive system
A system that carries out a dialog with terminal users. Users supply commands or other input from
the terminal. Many interactive systems display prompts to indicate that they are ready to accept
input.

invoke
To initiate the execution of a program.

iteration list
A list of two or more arguments for a command. The list is enclosed in parentheses and the
arguments are separated by spaces. PRIMOS executes the command for each argument in turn.

key field
Defines the location of a data item to a file-handling utility.

kill character
A character that deletes all preceding characters in a command line when PRIMOS processes the
command line. The default kill character for PRIMOS and many subsystems is the question mark (?).

LAN
See local area network.

LAN300
A Prime proprietary local area network.

library
A set of subroutines that many programs can call.

linking  utility
A utility that creates an executable file from the object file created by a language compiler.

literal character
A special character treated as ordinary text. For example, in ED the double quotation mark (") is
normally a delete character. You can force ED to treat the double quotation mark as a literal
character, by preceding it with the escape character, caret (A). When you do this, ED treats the
double quotation mark as an ordinary text character rather than as a delete character.

local area network
A network connecting a number of nearby systems over special lines.

local system
In a network, the computer to which a user's terminal is connected. If you use LAN300, your local
system is the one to which you connect with the NTS CONNECT command.

logical device number
An octal number by which PRIMOS identifies a device. A device's logical device number may be
unrelated to the device's actual physical address or physical device number.

logical disk
See disk.

A-6  Fifth  Edition



G/ossary

login file
A program or command file PRIMOS executes each time you log in. Login filenames are
LOGEN.RUN, LOGIN.SAVE, LOGIN.CPL, or LOGIN.COMI.

login-password
A password that PRIMOS uses to validate your right to log in under a given user TD.

long prompt
A PRIMOS prompt that displays time, usage, and command level information. You can invoke
long prompts with the -LONG option of the RDY command.

command macro
In ECL, a series of ECL editing commands that you can save and later invoke with a single key
combination.

manage-option
Option of the JOB command used to control the execution of a Batch job after it is submitted.

mapped
Copied to a user's address space. An EPF is mapped to your address space when you invoke it for
the first time. The EPF remains mapped for some time after it completes execution so that you can
quickly reinvoke it

master file directory
See MFD.

MFD
The highest level directory in the PRIMOS file system. An MFD lists the contents of a disk. The
objectname  for  all  MFDs  is  MFD,  and  the  pathname  for  the  MFD  of  a  given  disk  is
<diskname>MFD.

mini-command level
Results when a user has reached the maximum number of command levels allowed by the user's
command environment (called command environment depth). At mini-command level, PRIMOS
accepts only a limited set of commands.

monitor-option
Option of the JOB command used to monitor the status of a Batch job after it is submitted.

name generation
Creating new objectnames based on other objectnames in a command line. You use the name
generation characters, = and A, to show where elements of the old names should be substituted in
the new names.

NETLINK
Software that allows you to connect both to Prime systems on your local network and Prime and
other vendors' systems over a public data network.

network
A system of hardware and software that connects computers and allows them to communicate.

Network Terminal Service
See NTS.

nodename
A name that identifies a computer in a network.

not active
An EPF that has mn to completion but remains mapped to a user's address space is said to be not
active.

NTS
Software that controls links between terminals and computers in a LAN300 network.

Fifth  Edition  A-7



PRIMOS User's Guide

null line
In ED, a line that contains no text. ED inserts null lines at various points in the memory copy of a
file. New text lines are added at the null lines. Null lines do not become part of the file when it is
saved on disk.

object file
A generalized version of a program, created by a language compiler from the source code. You
must link the object file with a linking utility to create an executable file that the computer can mn.

objectname
A name that identifies a file system object. An objectname can have a maximum of 16 components,
separated by periods. Many objectnames have two components: a basename that identifies the
contents of the object, and a standard suffix that indicates the object's function. An objectname is
the last element of a pathname.

octal number
A number in base 8, shown with a subscript 8, for example 12 8.

on-units
Routines that handle errors encountered during program execution. The system default on-unit
displays an error message describing the problem encountered.

operating system
The program that organizes all work on the computer system. The operating system provides the
user interface, shares system resources among processes, and manages hardware operations.
PRIMOS is the operating system for 50 Series computers.

option
An optional term that modifies the action of a command. Option names always begin with a
hyphen (-).

ordinary pathname
A pathname that begins with the name of a top-level directory.

origin directory
See initial attach point

parent directory
The directory that contains a file system object is the object's parent directory.

partition
See disk.

pathname
A series of directory names, ending in an objectname, that describes a path through a file system
tree structure to a file system object. Angle-brackets separate the directory names in a pathname.
For example, the pathname AUTeORS>MYSTERY>POE>RAVEN, locates the file RAVEN in a
directory tree beginning with the directory AUTHORS.

phantom process
A process that executes disconnected from a terminal.

Prime ECS
See Prime Extended Character Set.

Prime Extended Character Set
The Prime extended version of the ANSI ASCII 7 bit character set. The Prime ASCII character set
includes all standard 7 bit ASCII characters with the eighth bit set to 1, so that PRIME characters in
the range decimal 128 to 255 correspond to standard ASCII characters in the range 0 to 127. In the
Prime Extended Character Set, characters with the eighth bit set to 0 are also significant. Appendix
C lists the complete extended character set. Also called Prime ECS.

A-8  Fifth  Edition



Glossary

PRIMOS
The operating system for all 50 Series computers.

priority  ACL
An ACL, set by the operator, that overrides all other ACLs set for objects on a disk. Operators set
priority ACLs so that they can back up disks regardless of the ACL protection set on individual
files.

process
The basic unit that PRIMOS uses to organize its work. PRIMOS establishes a process for each
logged-in user, for each phantom, and for certain other system functions. Each process operates in
its own environment, including such characteristics as a specific terminal line assignment (for user
processes), attach point, and the like. A major organizational task of PRIMOS is to share the
system's physical resources among processes.

project
A group of user IDs, identified by a project ID. Every user ID belongs to a project. If your user ID
has not been assigned a default project, you need to supply the project ID when you log in.

prompt
Text that PRIMOS and interactive subsystems display to indicate that they are ready to accept user
input.

ready prompt
A PRIMOS prompt that indicates that the last command was successfully executed and that
PRIMOS is ready to accept another command. OK, is the default PRIMOS ready prompt.

receive state
Controls the flow of messages sent with the MESSAGE command to a user terminal.

relative pathname
A pathname specified relative to a user's current attach point. Relative pathnames begin with *>.
For example, the pathname *>SCULPTURE>RODIN, describes a path from the current attach
point, through the subdirectory SCULPTURE, to the file RODIN.

remote file access
Use of files located on remote systems as if the files were on your local system.

remote ID
A user ID on a remote system.

remote login
Login to a remote system from a terminal connected to the local system.

remote system
In a network, a system tc which the user's terminal is not directiy connected. If you use LAN300,
systems other than the one you connect to with the NTS CONNECT command are remote systems.

$REST
In an ACL, $REST designates all users not otherwise specified by usernames or groupnames.

return
To calculate a value. Used for functions and subroutines.

RINGNET
A Prime local area network in which computers are connected in a ring configuration. Each user
terminal is connected directly to one computer on the ring.

runfile
A program in a form that can be executed by the computer. You use a linking utility to create a
runfile from an object file. Also called an executable file.

Fifth  Edition  A-9



PRIMOS User's Guide

site
In FTS, refers to a computer that is the source or destination of a file transfer. Sitenames identify
sites.

source code
A text file containing a program written in a programming language. You must compile source
code with a compiler and link the resulting object file with a linking utility to create an executable
file.

specific ACL
An ACL that defines access to a single file system object. A specific ACL is an attribute of the
object it protects, and only exists as long as the object exists.

spool
To submit a file to a spool queue for printing. You spool files with the SPOOL command.

spool queue
A list of files waiting to be printed.

static runfile
An executable file that must always be loaded into the same area of user memory.

string
A series of characters treated as text. A suing may contain numerals, for example, but the numerals
are treated simply as elements of text rather than as numerical values.

subdirectory
A directory contained within another directory.

submit-option
Option of the JOB command used when a Batch job is submitted for Batch execution.

subsystemAn interactive system that has its own commands and prompts.
suffix

The last component of an objectname with two or more components. Suffixes usually indicate the
function of the file system object. PRIMOS and subsystems recognize a number of standard
suffixes. For example, the .RUN suffix identifies an EPF.

syntax suppression
Prevents the PRIMOS command interpreter from processing some elements of the command line.
For example, syntax suppression prevents PRIMOS from evaluating global variables in a command
line. Instead, the variables are treated as literal strings. A tilde character (~) at the beginning of a
command line invokes syntax suppression.

system level
PRIMOS command level.

system prompt
One of the prompts displayed at PRIMOS command level.

systemname
See nodename.

text file
A file consisting of character data.

text formatter
A program that processes text files containing special formatting codes to produce formatted output
that can be displayed at a terminal or printed on a printer.

A-10  Fifth  Edition



G/ossary

top-level directory
The first level of subdirectory within an MFD. System Administrators often assign a top-level
directory to each user.

tree structure
The hierarchical structure of the PRIMOS file system. In the file system, directories can contain
other directories, which can in turn contain other directories, and so on. The result is that the file
system branches below each MFD like an inverted tree.

treewalking
Using wildcard characters in an intermediate position in a pathname to make a command act on
designated objects throughout a file system tree structure.

unmapped
Refers to an EPF that is available to a user in the file system, but is not mapped to the user's
address space.

user ID
A name by which PRIMOS identifies a user logged in to the system. You must have a valid user ID
to log in.

uti l i ty
A program that carries out a specialized set of operations. For example, programs that carry out
linking operations are called linking utilities.

variable
A symbolic name for a quantity that can have more than one actual value.

virtual circuit
A connection made via PRIMENET between two networked systems. A virtual circuit behaves as if
it were a direct connection even though the actual connection is routed through the network.

warning promptA prompt that PRIMOS displays when a command executes to completion but generates a warning
condition while executing. The default PRIMOS warning prompt is the same as the ready prompt,
OK, .

wide area network
A network connecting computers over long distances using public communication lines.

wildcard character
A character that can be substituted for one or more characters or components of an objectname in a
command line. PRIMOS searches a directory for actual objectnames that match the pattern of the
wildcard characters, and substitutes them in the command line. You use wildcards to make a single
command line act on a number of file system objects.

Fifth  Edition  A-11



Systems Defaults and Constants

Prime systems have the following defaults and constants.

Terminal Defaults
Full duplex

X-ON/X-OFF disabled

Buffered protocol (using carrier detect) disabled

Input error-checking disabled

PRIMOS Keyboard Standards

Character Octal Value

2208

2158

Interpretation
| Ctri ||_PJ BREAK (Interrupt)

| Return Newline, converted to 2128 (linefeed) by standard
software

PRIMOS Keyboard Defaults
Character Interpretation

Character erase
Line  kill

Note
You can change your erase and kill characters with the TERM command.

Fifth  Edition  B-1



PRIMOS User's Guide

PRIMOS Command Line Standards
Character  Interpretation

+ Wildcard for 1 character or add a literal for name generation
@ Wildcard  for  1  or  more  characters
A Wildcard negation or exclusion for name generation
=  Name  generation
;  Command  separator

Command processor syntax suppressor

Protection

File System Objects in ACL-protected Directories
Newly created files are opened with RW rights; once stored, they assume default protection
(the protection existing on the directory where they reside). Other objects are created with
default protection.

Files in Password-protected Directories
New files are created with the following protection:

Owner  All  access  rights  (RWD)
Non-owner: No access rights (NIL)

B-2  Fifth  Edition



The Prime Extended Character Set

r

As of Rev. 21.0, Prime has expanded its character set. The basic character set remains the
same; it is the ANSI ASCII 7-bit set (called ASCII-7) with the 8th bit turned on. However,
the 8th bit is now significant; when it is turned off, it signifies a different character. Thus, the
size of the character set has doubled from 128 to 256 characters. This expanded character set
is called the Prime Extended Character Set (Prime ECS).
The pre-Rev. 21.0 character set is a proper subset of Prime ECS. These characters have not
changed. Software written before Rev. 21.0 continues to run exactiy as it did before.
Software written at Rev. 21.0 or later that does not use the new characters needs no special
coding to use the old ones.
Prime ECS support is automatic at Rev. 21.0 or later. You may begin to use characters that
have the 8th bit turned off. However, the extra characters are not available on most printers
and terminals. Check with your System Administrator to find out whether you can take
advantage of the new characters in Prime ECS.
Table C-l shows the Prime Extended Character Set. The pre-Rev. 21.0 character set consists
of the characters with decimal values 128 through 255 (octal values 2008 through 3778). (The
pre-Rev. 21.0 character set is shaded in Table C-l.) The characters added at Rev. 21.0 all
have decimal values less than 128 (octal values less than 2008).

Specifying Prime ECS Characters
Direct Entry
On terminals that support Prime ECS, you can enter the characters directly; the characters
appear on the screen as you type them. For information on how to do this, see the appropriate
manual for your terminal.
A terminal supports Prime ECS if

• It uses ASCII-8 as its internal character set.
• The TTY8 protocol is configured on your asynchronous line.

Fifth Edition C-1



PRIMOS User's Guide

If you do not know whether your terminal supports Prime ECS, ask your System
Administrator.
On terminals that do not support Prime ECS, you can enter any of the ASCII-7 printing
characters (characters with a decimal value of 160 or higher) directiy by just typing them.

Octal Notation
If you use the Editor (ED), you can enter any Prime ECS character on any terminal by typing

'"octal-value

where octal-value is the three-digit octal number given in Table C-l. You must type all three
digits, including leading zeros.
Before you use this method to enter any of the ECS characters that have decimal values
between 32 and 127, first specify the following ED command, which permits ED to print as
*nnn any characters that have a first bit of 0.

MODE CKPAR

Character String Notation
The way in which you specify Prime ECS characters in character strings in programs depends
on the characters you wish to specify and the programming language used. For rules
describing how to specify Prime ECS characters in character strings, refer to the appropriate
language manual.

Special Meanings of Prime ECS Characters
Either PRIMOS or an applications program mnning on PREMOS may interpret some Prime
ECS characters in a special way. For example, PRIMOS interprets | ctri | |"pj (2208) as a
process interrupt. ED, the Editor, interprets the backslash (\) as a logical tab. If you wish to
make use of the Prime ECS backslash character in a file you are editing with ED, you must
define another character as your logical tab. For a detailed description of how PRIMOS
interprets special characters, see Chapter 1.

Prime Extended Character Set Table
Table C-l contains all of the Prime ECS characters, arranged in ascending order. This order
shows both the collating sequence and the way that comparisons are done for character strings.
For each character, the table includes the graphic, the mnemonic, the description, and the binary,
decimal, hexadecimal, and octal values. A blank entry indicates that the particular item does not
apply to this character. The graphics for control characters are specified as ̂ character; for
example, AP represents the character produced when you type P while holding I ctri | down.
Characters with decimal values from 000 to 031 and from 128 to 159 are control characters.
Characters with decimal values from 032 to 127 and from 160 to 255 are graphics characters.

C-2  Fifth  Edition



The Prime Extended Character Set

TABLE C-1
The Prime Extended Character Set

Graphic  Mnemonic Description Binary Decimal Hex Octal

RES1 Reserved for future
standardization

0000 0000 000 00 000

RES2 Reserved for future
standardization

0000 0001 001 01 001

RES3 Reserved for future
standardization

0000 0010 002 02 002

RES4 Reserved for future
standardization

0000 0011 003 03 003

IND Index 0000 0100 004 04 004
NEL Next line 0000 0101 005 05 005
SSA Start of selected area 0000 0110 006 06 006
ESA End of selected area 0000 0111 007 07 007
HTS Horizontal tabulation set 00001000 008 08 010
HTJ Horizontal tab with

justify
00001001 009 09 011

VTS Vertical tabulation set 00001010 010 0A 012
PLD Partial line down 00001011 011 0B 013
PLU Partial line up 00001100 012 0C 014
Rl Reverse index 00001101 013 0D 015
SS2 Single shift 2 00001110 014 0E 016
SS3 Single shift 3 0000 1111 015 OF 017  |
DCS Device control string 0001 0000 016 10 020
PU1 Private use 1 0001 0001 017 11 021
PU2 Private use 2 0001 0010 018 12 022
STS Set transmission state 0001 0011 019 13 023  |
CCH Cancel character 0001 0100 020 14 024
MW Message waiting 0001 0101 021 15 025
SPA Start of protected area 0001 0110 022 16 026
EPA End of protected area 0001 0111 023 17 027
RES5 Reserved for future

standardization
0001 1000 024 18 030

RES6 Reserved for future
standardization

0001 1001 025 19 031

RES7 Reserved for future
standardization

0001 1010 026 1A 032

CSI Control sequence
introducer

0001 1011 027 1B 033

ST String terminator 0001 1100 028 1C 034
OSC Operating system

command
0001 1101 029 1D 035

PM Privacy message 0001 1110 030 1E 036

Fifth  Edition  C-3



PRIMOS User's Guide

TABLE C-1
The Prime Extended Character Set Continued

Graphic Mnemonic Description Binary Decimal Hex Octal  {

APC Application program
command

0001 1111 031 1F 037

NBSP No-break space 0010 0000 032 20 040
i INVE Inverted exclamation

mark
0010 0001 033 21 041

* CENT Cent sign 0010 0010 034 22 042
£ PND Pound sign 0010 0011 035 23 043
a CURR Currency sign 0010 0100 036 24 044
¥ YEN Yen sign 0010 0101 037 25 045
I
I BBAR Broken bar 00100110 038 26 046
§ SECT Section sign 0010 0111 039 27 047
•• DIA Diaeresis, umlaut 00101000 040 28 050
© COPY Copyright sign 00101001 041 29 051
a FOI Feminine ordinal

indicator
00101010 042 2A 052

« LAQM Left angle quotation
mark

00101011 043 2B 053

- 1 NOT Not sign 00101100 044 2C 054
SHY Soft hyphen 00101101 045 2D 055

© TM Registered trademark
sign

00101110 046 2E 056

MACN Macron 00101111 047 2F 057
o DEGR Degree sign 0011 0000 048 30 060
± PLMI Plus/minus sign 0011 0001 049 31 061
2 SPS2 Superscript two 00110010 050 32 062
3 SPS3 Superscript three 00110011 051 33 063
y AAC Acute accent 00110100 052 34 064
M LCMU Lowercase Greek letter

p, micro sign
00110101 053 35 065

1 PARA Paragraph sign, Pilgrow
sign

0011 0110 054 36 066

• MIDD Middle dot 0011 0111 055 37 067
.* CED Cedilla 0011 1000 056 38 070

1 SPS1 Superscript one 0011 1001 057 39 071
o MOI Masculine ordinal

indicator
0011 1010 058 3A 072

» RAQM Right angle quotation
mark

0011 1011 059 3B 073

1 / 4 FR14 Common fraction
one-quarter

0011 1100 060 3C 074

C-4  Fifth  Edition



7ne Prime Extended Character Set

TABLE C-1
The Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

1 /2 FR12 Common fraction
one-half

0011 1101 061 3D 075

3/4 FR34 Common fraction
three-quarters

0011 1110 062 3E 076

^ iNVQ Inverted question mark 0011 1111 063 3F 077
V

A UCAG Uppercase A with grave
accent

0100 0000 064 40 100

A UCAA Uppercase A with acute
accent

0100 0001 065 41 101

A UCAC Uppercase A with
circumflex

0100 0010 066 42 102

A UCAT Uppercase A with tilde 0100 0011 067 43 103
A UCAD Uppercase A with

diaeresis
0100 0100 068 44 104

A UCAR Uppercase A with ring
above

0100 0101 069 45 105

/_ UCAE Uppercase diphthong 0100 0110 070 46 106

9 UCCC Uppercase C with
cedilla

0100 0111 071 47 107

E UCEG Uppercase E with grave
accent

01001000 072 48 110

E UCEA Uppercase E with acute
accent

01001001 073 49 111

E UCEC Uppercase E with
circumflex

01001010 074 4A 112

E UCED Uppercase E with
diaeresis

01001011 075 4B 113

'  ' UCIG Uppercase I with grave
accent

01001100 076 4C 114  '•

r UCIA Uppercase I with acute
accent

01001101 077 4D 115

i UCIC Uppercase I with
circumflex

01001110 078 4E 116

T UCID Uppercase I with
diaeresis

01001111 079 4F 117

D UETH Uppercase Icelandic
letter Eth

0101 0000 080 50 120

N UCNT Uppercase N with tilde 01010001 081 51 121
o UCOG Uppercase 0 with grave

accent
0101 0010 082 52 122

6 UCOA Uppercase 0 with acute
accent

0101 0011 083 53 123

Fifth Edition C-5



PRIMOS User's Guide

TABLE C-1
The Prime Extended Character Set - Continued

Graphic  Mnemonic Description Binary  Decimal  Hex  Octal

O
0

0
u
u
0
0
Y

p

UCOC

UCOT
UCOD

MULT

UCOO

UCUG

UCUA

UCUC

UCUD

UCYA

UTHN

Uppercase O with
circumflex
Uppercase O with tilde
Uppercase O with
diaeresis
Multiplication sign used
in mathematics
Uppercase O with
oblique line
Uppercase U with grave
accent
Uppercase U with acute
accent
Uppercase U with
circumflex
Uppercase U with
diaeresis
Uppercase Y with acute
accent
Uppercase Icelandic

0101 0100

01010101
0101 0110

0101 0111

0101 1000

0101 1001

0101 1010

0101 1011

0101 1100

0101 1101

0101 1110

084

085
086

087

088

089

090

091

092

093

094

13 LGSS
letter Thorn

0101 1111 095Lowercase German
letter doubles

5F

a LCAG Lowercase a with grave
accent

0110 0000 096 60

a LCAA Lowercase a with acute
accent

0110 0001 097 61

a

a
a

LCAC

LCAT
LCAD

Lowercase a with
circumflex
Lowercase a with tilde
Lowercase a with
diaeresis

01100010

0110 0011
01100100

098

099
100

62

63
64

a LCAR Lowercase a with ring
above

01100101 101 65

ae
S

LCAE
LCCC

Lowercase diphthong ae
Lowercase c with cedilla

01100110
01100111

102
103

66
67

e LCEG Lowercase e with grave
accent

01101000 104 68

e LCEA Lowercase e with acute
accent

01101001 105 69

e LCEC Lowercase e with
circumflex

01101010 106 6A

54 124

55 125
56 126

57 127

58 130

59 131

5A 132

5B 133

5C 134

5D 135

5E 136

5F 137

60 140

141

142

143
144

145

146
147
150

151

152

C-6 Fifth Edition



The Prime Extended Character Set

TABLE C-1
The Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

e LCED Lowercase e with
diaeresis

01101011 107 6B 153

I LCIG Lowercase i with grave
accent

01101100 108 6C 154

s
I LCI A Lowercase i with acute

accent
01101101 109 6D 155

a
I LCIC Lowercase i with

circumflex
01101110 110 6E 156

I LCID Lowercase i with
diaeresis

01101111 111 6F 157  |

5 LETH Lowercase Icelandic
letter Eth

0111 0000 112 70 160

fi LCNT Lowercase n with tilde 0111 0001 113 71 161
V

0 LCOG Lowercase o with grave
accent

0111 0010 114 72 162

6 LCOA Lowercase o with acute
accent

0111 0011 115 73 163  |

A
0 LCOC Lowercase o with

circumflex
01110100 116 74 164

6 LCOT Lowercase o with tilde 01110101 117 75 165
6 LCOD Lowercase o with

diaeresis
0111 0110 118 76 166

■f DIV Division sign used in
mathematics

01110111 119 77 167

0 LCOO Lowercase o with
oblique line

0111 1000 120 78 170

U LCUG Lowercase u with grave
accent

0111 1001 121 79 171  |

U LCUA Lowercase u with acute
accent

0111 1010 122 7A 172
A

u LCUC Lowercase u with
circumflex

0111 1011 123 7B 173

ii LCUD Lowercase u with
diaeresis

0111 1100 124 7C 174

y LCYA Lowercase y with acute
accent

0111 1101 125 7D 175

P LTHN Lowercase Icelandic
letter Thorn

0111 1110 126 7E 176

y LCYD Lowercase y with
diaeresis

01111111 127 7F 177

Fifth  Edition  C-7



PRIMOS User's Guide

TABLE C-7
The Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

NUL Null 1000 0000 128 80 200
AA SOH/TC1 Start of heading 1000 0001 129 81 201
AB STX/TC2 Start of text 1000 0010 130 82 202
AC ETX/TC3 End of text 1000 0011 131 83 203
AD EOT/TC4 End of transmission 1000 0100 132 84 204
AE ENQ/TC5 Enquiry 1000 0101 133 85 205
AF ACK/TC6 Acknowledge 1000 0110 134 86 206
AG BEL Bell 1000 0111 135 87 207
AH BS/FEO Backspace 10001000 136 88 210
Al HT/FE1 Horizontal tab 10001001 137 89 211
AJ LF/NL/FE2 Linefeed 10001010 138 8A 212
AK VT/FE3 Vertical tab 10001011 139 8B 213
AL FF/FE4 Form feed 10001100 140 8C 214
AM CR/FE5 Carriage return 10001101 141 8D 215
AN SO/LS1 Shift out 10001110 142 8E 216
A0 SI/LSO Shift in 10001111 143 8F 217
AP DLEHTJ7 Data link escape 1001 0000 144 90 220
AQ DC1/XON Device control 1 1001 0001 145 91 221
AR DC2 Device control 2 1001 0010 146 92 222
AS DC3/XOFF Device control 3 10010011 147 93 223
AT DC4 Device control 4 1001 0100 148 94 224
AU NAK/TC8 Negative acknowledge 1001 0101 149 95 225
AV SYN/TC9 Synchronous idle 10010110 150 96 226
AW ETBfTCIO End of transmission

block
10010111 151 97 227

AX CAN Cancel 1001 1000 152 98 230
AY EM End of medium 1001 1001 153 99 231
AZ SUB Substitute 1001 1010 154 9A 232
A[ ESC Escape 1001 1011 155 9B 233
A\ FS/IS4 File separator 1001 1100 156 9C 234
1 GS/IS3 Group separator 1001 1101 157 9D 235
A A RS/IS2 Record separator 1001 1110 158 9E 236
A US/IS1 Unit separator 1001 1111 159 9F 237

SP Space 1010 0000 160 A0 240
1 Exclamation mark 1010 0001 161 A1 241
// Quotation mark 10100010 162 A2 242
# NUMB Number sign 1010 0011 163 A3 243
$ DOLR Dollar sign 10100100 164 A4 244
% Percent sign 10100101 165 A5 245
& Ampersand 10100110 166 A6 246

C-8  Fifth  Edition



The Prime Extended Character Set

TABLE C-1
The Prime Extended Character Set - Continued

G r a p h i c  M n e m o n i c  D e s c r i p t i o n Binary Decimal Hex Octal

/ Apostrophe 10100111 167 A7 247
( Left parenthesis 10101000 168 A8 250
) Right parenthesis 10101001 169 A9 251
* Asterisk 10101010 170 AA 252
+ Plus sign 10101011 171 AB 253
> Comma 10101100 172 AC 254

Minus sign 10101101 173 AD 255
B Period 10101110 174 AE 256
/ Slash 10101111 175 AF 257
0 Zero 10110000 176 BO 260
1 One 1011 0001 177 B1 261
2 Two 1011 0010 178 B2 262
3 Three 1011 0011 179 B3 263
4 Four 10110100 180 B4 264  |
5 Five 1011 0101 181 B5 265
6 Six 10110110 182 B6 266
7 Seven 10110111 183 B7 267
8 Eight 1011 1000 184 B8 270
9 Nine 1011 1001 185 B9 271
: Colon 1011 1010 186 BA 272  !
> Semicolon 1011 1011 187 BB 273
< Less than sign 10111100 188 BC 274
= Equal sign 1011 1101 189 BD 275
> Greater than sign 1011 1110 190 BE 276
? Question mark 1011 1111 191 BF 277
@  A T Commercial at sign 1100 0000 192 CO 300
A Uppercase A 1100 0001 193 C1 301
B Uppercase B 1100 0010 194 C2 302
C Uppercase C 1100 0011 195 C3 303  I
D Uppercase D 1100 0100 196 C4 304  |
E Uppercase E 1100 0101 197 C5 305
F Uppercase F 1100 0110 198 C6 306
G Uppercase G 1100 0111 199 C7 307
H Uppercase H 11001000 200 C8 310
I Uppercase I 11001001 201 C9 311
J Uppercase J 11001010 202 CA 312
K Uppercase K 11001011 203 CB 313
L Uppercase L 11001100 204 CC 314
M Uppercase M 11001101 205 CD 315
N Uppercase N 11001110 206 CE 316

Fifth  Edition  C-9



PRIMOS User's Guide

TABLE C-1
The Prime Extended Character Set - Continued

Graphic M n e m o n i c  D e s c r i p t i o n Binary Decimal Hex Octal

o Uppercase 0 11001111 207 CF 317
P Uppercase P 1101 0000 208 DO 320
Q Uppercase Q 1101 0001 209 D1 321
R Uppercase R 1101 0010 210 D2 322
S Uppercase S 1101 0011 211 D3 323
T Uppercase T 1101 0100 212 D4 324
U Uppercase U 1101 0101 213 D5 325
V Uppercase V 1101 0110 214 D6 326
w Uppercase W 1101 0111 215 D7 327
X Uppercase X 1101 1000 216 D8 330
Y Uppercase Y 1101 1001 217 D9 331
z Uppercase Z 1101 1010 218 DA 332
[ LBKT  Left  bracket 1101 1011 219 DB 333
\ REVS  Reverse  slash,

backslash
1101 1100 220 DC 334  j

] RBKT  Right  bracket 1101 1101 221 DD 335
A C F L X  C i r c u m fl e x 1101 1110 222 DE 336

Underline, underscore 1101 1111 223 DF 337
GRAV  Left  single  quote,  grave

accent
1110 0000 224 EO 340

a Lowercase a 1110 0001 225 E1 341
b Lowercase b 11100010 226 E2 342
c Lowercase c 11100011 227 E3 343
d Lowercase d 11100100 228 E4 344  '
e Lowercase e 11100101 229 E5 345
f Lowercase f 11100110 230 E6 346
g Lowercase g 11100111 231 E7 347
h Lowercase h 11101000 232 E8 350
i Lowercase i 11101001 233 E9 351
j Lowercase j 11101010 234 EA 352  i
k Lowercase k 11101011 235 EB 353
I Lowercase I 11101100 236 EC 354

m Lowercase m 11101101 237 ED 355
n Lowercase n 11101110 238 EE 356
0 Lowercase o 11101111 239 EF 357
P Lowercase p 1111 0000 240 FO 360
q Lowercase q 1111 0001 241 F1 361
r Lowercase r 1111 0010 242 F2 362
s Lowercase s 1111 0011 243 F3 363
t Lowercase t 1111 0100 244 F4 364

C-10  Fifth  Edition



The Prime Extended Character Set

TABLE C-1
The Prime Extended Character Set - Continued

iphic Mnemonic Description

u Lowercase u
V Lowercase v
w Lowercase w
X Lowercase x
y Lowercase y
z Lowercase z
{ LBCE Left brace
I VERT Vertical line
} RBCE Right brace

TIL Tilde
DEL Delete

Binary  Decimal  Hex  Octal

1111 0101 245 F5 365
1111 0110 246 F6 366
1111 0111 247 F7 367
1111 1000 248 F8 370
1111 1001 249 F9 371
1111 1010 250 FA 372
1111 1011 251 FB 373
1111 1100 252 FC 374
1111 1101 253 FD 375
1111 1110 254 FE 376
11111111 255 FF 377

Fifth  Edition  C-11



Error Messages

Error messages in this appendix are listed in two sections:

• Runtime error messages
• Batch error messages

Errors are listed alphabetically within each group, according to the first word that is constant.
Leading asterisks and variable names are ignored in alphabetizing.

Runtime Error Messages
Descriptions of runtime error messages may be followed by labels enclosed either in
parentheses or brackets. For example,

A l r e a d y  e x i s t s  .  F i l e  S y s t e m
Attempt made to create an object with die same name as one already existing. (CREA$$)
(SRCH$$) [E$EXST]

The label in parentheses is usually the name of a subroutine or group of subroutines; the label
in brackets is the name of an error code. If a call to the subroutine is problematic, the error
code is invoked. The error message is connected to the error code and is displayed at the
user's terminal.

A C C E S S  V I O L A T I O N  6 4 V  m o d e
Attempt to perform operations in segments to which user has no right.

A C L  t o o  b i g .  F i l e  S y s t e m
Either ACL contains more than 32 entries, or the ACL exceeds space limitations. (AC$SET,
ACSCHG) [ESACBG]

* * * * A D  R - m o d e  f u n c t i o n
Overflow or underflow in double-precision addition/subtraction (A$66,S$66).

Fifth  Edition  D-1



PRIMOS User's Guide

A l l  fi l e  u n i t s  i n  u s e .  F i l e  S y s t e m
User has requested use of a file-unit when he already has the maximum allowable number of file-
units open, or the system has exhausted its pool of available units. (Search subroutines) [ESFUIU]

A L L  R E M O T E  U N I T S  I N  U S E  F i l e  S y s t e m
Attempt made to assign a remote unit when none are available. (Network error) [ESFUIU]

* * * *  A L O G / A L O G  1 0  -  A R G U M E N T  < = 0  V - m o d e  f u n c t i o n
Argument not greater than zero used in logarithm (AEOG, ALOG 10) function.

fi l e n a m e  A L R E A D Y  E X I S T S  O l d  fi l e  c a l l
Attempt made to create a file or directory with the same name as one already existing.

A l r e a d y  e x i s t s  .  F i l e  S y s t e m
Attempt made to create an object with the same name as one already existing. (CREA$$, SRCH$$)
[E$EXST]

* * * * A T  R - m o d e  f u n c t i o n
Both arguments are zero in the ATAN2 function.

* * * *  A T A N 2  -  B O T H  A R G U M E N T S  =  0  V - m o d e  f u n c t i o n
Both arguments are zero in the ATAN2 function.

* * * *  A T T D E V  -  B A D  U N I T  V - m o d e  c a l l
Incorrect logical device unit number in the ATTDEV subroutine call.

B A D  C A L L  T O  S E A R C H  O l d  fi l e  c a l l
Error in calling the SEARCH subroutine; for example, incorrect parameter.

B a d  c o m m a n d  f o r m a t  P R I M O S
User has issued an illegal command line. Command is ignored. [E$CMND]

B A D  D A M  F I L E  O l d  fi l e  c a l l
The DAM file specified has been corrupted, either by the programmer or by a system problem.
[SS]

B a d  D A M  fi l e .  F i l e  S y s t e m
The DAM file specified has been corrupted, either by the programmer or by a system problem.
(PRWF$$, SRCH$$) [ESBDAM]

B a d  d o p e  v e c t o r .  F O R T R A N  I / O
Your program may have overwritten itself. If not, this message may indicate a compiler or library
error. [E$BDV]

B a d  f o r m a t .  F O R T R A N  I / O
Your program may have overwritten itself. If not, this message may indicate a compiler or library
error. [E$FER]

B a d  k e y  i n  c a l l .  P R I M O S
Incorrect key value specified in subroutine argument by a user's program. [E$BKEY]

D-2  Fifth  Edition



Error Messages

B a d  L U B T L  e n t r y .  F O R T R A N  I / O
Your program has possibly overwritten itself or part of the library. [E$BLUE]

B A D  P A R A M E T E R  O l d  fi l e  c a l l
Incorrect parameter value in subroutine call. [SA]

B a d  p a r a m e t e r .  P R I M O S
Incorrect parameter value in subroutine call. [E$BPAR]

B a d  p a s s w o r d .  F i l e  S y s t e m
Incorrect password specified in ATCH$$ subroutine. In pre-Rev. 19.0 systems, you return to
PRIMOS level attached to no directory. In Rev. 19.0 and later systems, you return to PRIMOS
level attached to the home directory. The home directory is either the directory from which you
activated the ATCH$$ subroutine or another directory previously defined as home. (AT$
subroutines) [E$BPAS]

B a d  r e m o t e  p a s s w o r d .  P R I M E N E T
An attempt was made to log in to another system using an invalid password. [E$BRPA]

B A D  R T N R E C  P R I M O S
System error.

B a d  s e g m e n t  d i r e c t o r y  u n i t .  F i l e  S y s t e m
Error generated in accessing segment directory, that is, PRIMOS file-unit specified is not a segment
directory. (SRCHSS) [ESBSUN]

B a d  s t a c k  f o r m a t  s i g n a l i n g .  P R I M O S
Condition mechanism cannot perform requested action because the command processor stack has
been damaged (system error). Command environment is initialized and user returned to PRIMOS
command level. [ESSTKF, ESSTKS]

B A D  S V C  P R I M O S
Bad supervisor call. In FORTRAN, usually caused by program writing over itself.

B a d  t r u n c a t e  o f  s e g m e n t  d i r e c t o r y .  F i l e  S y s t e m
Error encountered in truncating segment directory. (SGDR$$) [E$BTRAN]

B a d  u n i t  n u m b e r .  F i l e  S y s t e m
PRIMOS file-unit number specified is invalid because it is outside legal range. (PRWF$$,
RDEN$$, SRCHSS, SGDR$$). [E$BUNT]

B a d  u s e  o f  E X I T .  P R I M O S
The condition mechanism sends this fatal message. You return to PRIMOS command level.
[ESNEXP]

B e g i n n i n g  o f  fi l e  .  F i l e  S y s t e m
An attempt was made to access locations before the beginning of the file. (PRWF$$, RDEN$$,
SGDR$$) [ESBOF]

* * * * B N  n  R - m o d e  f u n c t i o n
Device error in REWIND command on FORTRAN logical unit n.

Fifth  Edition  D-3



PRIMOS User's Guide

B u f f e r  t o o  s m a l l .  F i l e  S y s t e m
Buffer as defined is not large enough to accommodate entry to be read into it. (RDEN$$)
[E$BFTS]

C a n n o t  a c c e s s  l i k e  r e f e r e n c e .  F i l e  S y s t e m
Object specified in the -LIKE option of SET_ACCESS could not be accessed for some reason.
(ACSLIK) [E$LRNA]

C a t e g o r y  p r o t e c t s  M F D .  F i l e  S y s t e m
An attempt was made to delete an access category that protects the MFD. The MFD must be
removed from the category before the category can be deleted. (CAT$DL) [ESCPMF]

C o m m a n d  l i n e  m o r e  t h a n  1 6 0  c h a r a c t e r s  .  P R I M O S
A command line of more than 160 characters has been received. The command is not executed, and
you return to PRIMOS command level. [E$TRCL]

C o m m a n d  l i n e  t r u n c a t e d .  P R I M O S
A command line has exceeded the limit of 160 characters.

C o n c e a l e d  s t a c k  o v e r fl o w .  P R I M O S
System error. (Generally sent by the condition mechanism.) [E$CSOV]

C r a w l o u t  u n w i n d  f a i l e d .  P R I M O S
System error. (Generally sent by the condition mechanism.) [E$CRUN]

* * * *  d a t a n  -  B A D  A R G U M E N T  V - m o d e  f u n c t i o n
The second argument in the DATAN2 function is zero.

* * * * d e  R - m o d e  f u n c t i o n
The exponent of a double-precision number has overflowed.

T h e  d e v i c e  i s  i n  u s e  .  F i l e  S y s t e m
An attempt was made to ASSIGN a device currendy assigned to another user. [E$DVIU]

D e v i c e  n o t  a s s i g n e d .  F i l e  S y s t e m
An attempt was made to perform I/O operations on a device before assigning that device.
[E$NASS]

D e v i c e  i s  n o t  s t a r t e d .  F i l e  S y s t e m
An attempt was made to access a disk not physically or logically connected to the system. If disk
must be accessed, the system operator must start it up. [E$DNS]

* * * *  D E X P  -  A R G U M E N T  T O O  L A R G E  V - m o d e  f u n c t i o n
The argument of the DEXP function is too large; that is, it will give a result outside the legal range.

* * * *  D E X P  -  O V E R F L O W * u n d e r fl o w  V - m o d e  f u n c t i o n
An overflow or underflow condition occurred in calculating the DEXP function.

T h e  d i r e c t o r y  i s  d a m a g e d .  F i l e  S y s t e m
The directory has become corrupted. (All file system subroutines.) [E$BUFD]

D-4  Fifth  Edition



Error Messages

T h e  d i r e c t o r y  i s  n o t  e m p t y .  F i l e  S y s t e m
An attempt was made to delete a non-empty directory. (SRCH$$, FEL$DL) [E$DNTE]

D i r e c t o r y  s t i l l  c o n t a i n s  a c c e s s  c a t e g o r i e s .  F i l e  S y s t e m
You have tried to convert an ACL directory to a password directory, but the directory still contains
one or more access categories; having these access categories is not allowed. (AC$RVT) [E$CATF]

D i r e c t o r y  s t i l l  c o n t a i n s  A C L  s u b d i r e c t o r i e s .  F i l e  S y s t e m
You have tried to convert an ACL directory to a password directory, but the directory still contains
one or more ACL subdirectories; having these subdirectories is not allowed. (ACSRVT) [ESADRF]

D i r e c t o r y  t o o  l a r g e  .  F i l e  S y s t e m
An attempt has been made to add too large an entry to a directory. (CREA$$, SRCHSS, ACSSET,
ACSCHG) [E$FDFL]

Disk  format  does  not  support  this  revision  of  PRIMOS  .  File  System
An attempt was made to convert a password directory to an ACL directory on a pre-Rev. 19 disk.
(ACSSET, ACSDFT) [E$ST19]

D I S K  F U L L  O l d  fi l e  c a l l
There is no more room for creating/extending any type of file on disk. [DJ]

D i s k  h a s  b e e n  s h u t  d o w n .  F i l e  S y s t e m
The disk has been shut down. [E$SHDN]

T h e  d i s k  i s  f u l l .  F i l e  S y s t e m
There is no more room for creating/extending any type of file on disk. (CREA$$, PRWF$$,
SRCH$$, SGDR$$) [E$DKFL]

Note

Space may be made available. Use the PRIMOS commands ATTACH, LD, and DELETE to
remove files mat are no longer needed.

D i s k  I / O  e r r o r  F i l e  S y s t e m
A read/write error was encountered in accessing disk. You return immediately to PRIMOS level.
Not correctable by applications programmer. If this happens, notify your System Administrator.
(All file system subroutines) [E$DISK]

D i s k  i s  w r i t e - p r o t e c t e d .  F i l e  S y s t e m
An attempt has been made to write to a disk that is WRETE-protected. (All file system subroutines)
[E$WTPR]

d k  e r r o r  O l d  fi l e  c a l l
A read/write error was encountered in accessing the disk. Try again; if you receive the same error,
contact your System Administrator. [WB]

* * * * D L  R - m o d e  f u n c t i o n
Argument was not greater than zero in DLOG or DLOG2 function.

* * * *  D L 0 G * D L 0 G 2  -  A R G U M E N T  < = 0  V - m o d e  f u n c t i o n
Argument not greater than zero was used in DLOG or DLOG2 function.

Fifth  Edition  D-5



PRIMOS User's Guide

* * * * D N  n  R - m o d e  f u n c t i o n
Device error (end of file) on FORTRAN logical unit n.

* * **  DSIN*DCOS  -  ARGUMENT  RANGE  ERROR  V-mode  funct ion
Argument outside legal range for DSEN or DCOS function.

* * * *  D S Q R T  -  A R G U M E N T  < 0  V - m o d e  f u n c t i o n
Negative argument in DSQRT function.

* * * * D T  R - m o d e  f u n c t i o n
Second argument is zero in DATAN2 function. (D$22)

D U P L I C A T E  N A M E  O l d  fi l e  c a l l
Attempt to create/rename a file with the name of an existing file. [CZ]

* * * * D Z  R - m o d e  f u n c t i o n
Attempt to divide by zero (double-precision).

File SystemEnd  of  file.
Attempt to access location after the end of file. (PRWF$$, RDEN$$, SGDR$$) [E$EOF]

* * * * E Q  R - m o d e  f u n c t i o n
Exponent overflow. (A$81)

E n t r y  i s  a n  a c c e s s  c a t e g o r y .  F i l e  S y s t e m
An attempt was made to open an access category, as, for example, with the command SLIST.
(SRCH$$) [ESIACL]

* * * * E X  R - m o d e  f u n c t i o n
Exponent function value too large in EXP or DEXP function.

* * * *  E X P  -  A R G U M E N T  T O O  L A R G E  V - m o d e  f u n c t i o n
The argument of the EXP function is too large, that is, it will give a result outside the legal range.

* * * *  E X P  -  O V E R F L O W  V - m o d e  f u n c t i o n
Overflow occurred in calculating the EXP function.

F a t a l  e r r o r  i n  c r a w l o u t .  P R I M O S
System error. [ESCRWL]

* * * * f e  R - m o d e  f u n c t i o n
Error in FORMAT statement. FORMAT statements are not completely checked at compile time.
(F$IO)

F i l e  i n  u s e .  F i l e  S y s t e m
The message may have two causes. First, you may have attempted to open a file already opened by
you or by some other user. Second, you may have attempted to set a quota on a directory that
currently has none and to which someone is attached or in which someone has a file open.
(SRCH$$) [E$FDEL]

D-6  Fifth  Edition



Error Messages

Note
At Rev. 18 and later, FUTIL no longer closes open file-units when it is invoked. Therefore,
command files that depend on FUTIL to close units may receive File in Use or File
Open on Delete messages. To avoid this message, close files explicidy, using the CLOSE
command.

F i l e  i s  d e l e t e - p r o t e c t e d .  F i l e  S y s t e m
The delete-protect switch has been set. (SRCHSS, FELSDL) [E$DLPR]

T h e  fi l e  i s  t o o  l o n g .  F i l e  S y s t e m
Attempt made to increase size of segment directory beyond size limit. (SGDR$$) [E$FITB]

F i l e  o p e n  o n  d e l e t e  F i l e  S y s t e m
Attempt made to delete a file that is open. (SRCH$$, FELSDL) [E$FDEL]

Note
At Rev. 18 and later, FUTIL no longer closes open file-units when it is invoked. Therefore,
command files which depend on FUTEL to close units may receive File in Use or File
Open on Delete messages. To avoid this message, close files explicitly, using the CLOSE
command.

* * * * F N  n  R - m o d e  f u n c t i o n
Device error in BACKSPACE command on FORTRAN logical unit n.

* * * *  f $ b n  -  B A D  L O G I C A L  U N I T  V - m o d e  f u n c t i o n
FORTRAN logical unit number out of range.

* * * *  F $ I O  -  F O R M A T  E R R O R  V - m o d e  f u n c t i o n
Incorrect FORMAT statement. FORMAT statements are not completely checked at compile time.

* * * *  f $ I O  -  F O R M A T * D A T A  M I S M A T C H  V - m o d e  f u n c t i o n
Input data does not correspond to FORMAT statement.

* * * *  f $ I O  -  N U L L  R E A D  U N I T  V - m o d e  f u n c t i o n
FORTRAN logical unit for READ statement not configured properly.

F $ l O B F  o v e r fl o w .  F O R T R A N  I / O
You are trying to input or output more data than the internal buffer in the I/O subroutines can hold.
A discussion of possible solutions appears in the Subroutines Reference IV: Libraries and I/O.
[ESBKOV]

F o r m a t / d a t a  m i s m a t c h .  F O R T R A N  I / O
A program contains a format/data mismatch; that is, format is numeric and data is alpha. If you are
using formatted I/O, the data item you are inputting or outputting is not the type (such as integer,
real, or character) that you specified in your format statement. If you are using list-directed input,
any character data must be given in quotation marks. You may also have tried to read a real number
into an integer variable. [ESFDMM]

* * * I I  R - m o d e  f u n c t i o n
Exponentiation exceeds integer size. (E$ll)

Fifth  Edition  D-7



PRIMOS User's Guide

I n v a l i d  s e g m e n t  n u m b e r .  F i l e  S y s t e m
Attempt made to access segment number outside valid range. [E$BSGN]

* * * *  1 * * 1  -  A R G U M E N T  E R R O R  V - m o d e  f u n c t i o n
Exponentiation exceeds integer size.

I l l e g a l  a c c e s s  m o d e .  F i l e  S y s t e m
The access portion of an access pair contains an unknown access mnemonic. (AC$SET, ACSCHG)
[E$BMOD]

I l l e g a l  i d e n t i fi e r .  F i l e  S y s t e m
The identifier portion of an access pair contains an illegal user ID or group ID. (ACSSET,
ACSCHG) [E$BID]

I L L E G A L  I N S T R U C T I O N  A T  o c t a l - l o c a t i o n  R  m o d e
An instruction at octal-location cannot be identified by the computer. This message appears only
with R-mode programs compiled and linked on pre-Rev. 17 systems.

I l l e g a l  n a m e .  F i l e  S y s t e m
Illegal name specified for a file or directory. (CREA$$, SRCH$$) [E$BNAM]

I l l e g a l  r e m o t e  r e f e r e n c e .  F i l e  S y s t e m
Attempt to perform network operations by user not on network or attempt to initiate a phantom
from a remote partition. [E$IREM]

I l l e g a l  t r e e n a m e .  F i l e  S y s t e m
The string specified for a pathname is syntactically incorrect. [E$FTRE]

* * * * I M  R - m o d e  f u n c t i o n
Overflow or underflow occurred during a multiply. (M$l 1, E$l 1)

fi l e n a m e  I N  U S E .  O l d  fi l e  c a l l
Attempt made to open a file already opened or to close/delete a file opened by another user, and so
forth. [SI]

I n c o r r e c t  a c c e s s  c o n t r o l  l i s t  f o r m a t .  F i l e  S y s t e m
ACL specified  in  SET_ACCESS or  EDIT_ACCESS was  not  in  proper  format.  This  message  -^
usually results from an omitted colon between the identifier and the access rights. (ACSSET,
AC$CHG) [E$BACL]

I n c o r r e c t  v e r s i o n  n u m b e r .  F i l e  S y s t e m
A version number was passed to an ACL routine that was not recognized. (AC$SET, ACSCHG,
AC$LST, GETID$) [E$BVER]

I n s u f fi c i e n t  a c c e s s  r i g h t s .  P R I M O S
User does not have necessary access rights to file system object, or to perform the action desired.
[E$NRIT]

I n v a l i d  a r g u m e n t  t o  c o m m a n d .  P R I M O S
A command has been issued with an illegal argument The command is not executed. [E$BARG]

D-8  Fifth  Edition



Error Messages

* * * * I / 0  e r r o r  o n  l o g i c a l  u n i t  n  P R I M O S
This FORTRAN error message is usually followed by a second message that gives more precise
information on the problem. Two points to remember are

• FORTRAN'S method of identifying logical units does not necessarily match the unit numbers
given by the STATUS UNITS command.

• FORTRAN may not consider a file-unit open unless it is open in the needed mode. (For
example, a file opened for reading only is still considered closed for writing.)

I / O  e r r o r  o r  d e v i c e  i n t e r r u p t .  P R I M O S
An external device has generated an interface line defined to cause an interrupt of the user
program. [E$EEDE]

* * * * l g  R - m o d e  f u n c t i o n
Argument not greater than zero in ALOG or ALOG10 function.

L i k e  r e f e r e n c e  n o t  f o u n d .  F i l e  S y s t e m
A reference used with the -LIKE option of  SET_ACCESS cannot  be located.  (AC$LIK)
[E$LRNF]

M a x  n u m b e r  o f  u s e r s  e x c e e d e d .  P R I M O S
The maximum allowable number of users is already using the system. (This may mean that the
operator has used die MAXUSR command to decrease the number of users temporarily.)

M a x i m u m  q u o t a  e x c e e d e d .  F i l e  S y s t e m
You have tried to store a number of records in a directory that exceeds the maximum number of
records allowed for the directory. [ESMXQB]

M a x i m u m  r e m o t e  u s e r s  e x c e e d e d .  F i l e  S y s t e m
No more users may access the network. [E$TMRU]

N a m e  i s  t o o  l o n g .  F i l e  S y s t e m
Length of name in argument list exceeds 32 characters. [E$NMLG]

N e t w o r k  e r r o r  d e t e c t e d .  P R I M E N E T
An error has occurred in PRIMENET while attempting to process a remote request. [ESNETE]

N o  d r i v e r  f o r  d e v i c e .  F O R T R A N  I / O
You are trying to use a device for which IOCS does not have a driver (that is, a subroutine that
interfaces with a device). [E$NDFD]

N o  i n f o r m a t i o n .  F i l e  S y s t e m
You have fried to access a file system object and you could not. Some common reasons include
insufficient access rights, non-existent object, and wrong type. This message does not reveal
whether the specified object exists. [E$NINF]

N o  p h a n t o m s  a r e  a v a i l a b l e .  P R I M O S
An attempt has been made to spawn a phantom, but the maximum allowable number of phantoms
has been reached. (PHNTM$) [ESNPHA]

Fifth  Edition  D-9



PRIMOS User's Guide

N o  N P X  s l a v e s  a v a i l a b l e .  P R I M E N E T
A remote reference to has been attempted but no slave processes are available on the remote
system. [E$NSLA]

N o  o n - u n i t  f o u n d .  C o n d i t i o n  m e c h a n i s m
Condition mechanism cannot take action. You return to PRIMOS command level. [ESNOON]

N o  r o o m .  F i l e  S y s t e m
You have tried to add to a table of assignable devices with a DISKS or ASSIGN AMLC command,
and the table is already filled. CE$ROOM]

N o  r o o m  i n  o u t p u t  b u f f e r .  P R I M E N E T
An error has occurred in PRIMENET while attempting to process a remote request. [E$NROB]

N o  t i m e r .  F i l e  S y s t e m
Clock not started. System error. [E$NTIM]

N O  U F D  A T T A C H E D  O l d  fi l e  c a l l
You are not attached to a directory. Usually occurs after attempt to attach with a bad password in
pre-Rev. 19.0 systems. [AL, SL]

N o  U F D  a t t a c h e d .  F i l e  S y s t e m
You are not attached to a directory. Usually occurs after attempt to attach with a bad password in
pre-Rev. 19.0 systems. (ATCH$$, CREA$$, GPAS$$, SATR$$, SRCH$$) [E$NATTJ

N o t  a  fi l e  o r  a  d i r e c t o r y .  F i l e  S y s t e m
You attempted to protect an access category with an ACL. Only files, directories, and segment
directories can be protected by an ACL. (ACSSET, ACSCHG, AC$LIK, ACSCAT) [E$NTFD]

N o t  a  q u o t a  d i s k .  F i l e  S y s t e m
You attempted to set or list a quota on a pre-Rev. 19 disk. (Q$SET) [E$NOQD]

N o t  a  s e g m e n t  d i r e c t o r y .  F i l e  S y s t e m
You attempted to perform segment directory operations on a file system object that is not a .-^.
segment directory. (SRCH$$) [E$NTSD]

N O T  A  U F D .  O l d  fi l e  c a l l
You attempted to perform directory operations on a file that is not a directory. [AR]

N o t  a  U F D  F i l e  S y s t e m
You attempted to perform directory operations on a file that is not a directory. (ATCH$$, GPAS$$
SRCH$$). [ESNTUD]

N o t  a n  a c c e s s  c a t e g o r y .  F i l e  S y s t e m
This is not an access category. (ACSCAT) [E$NCATJ

N o t  a n  A C L  d i r e c t o r y .  F i l e  S y s t e m
You have attempted to use an ACL command (other than SET_ACCESS) on a password directory.
[ESNACL]

D-10  Fifth  Edition



Error Messages

d e v i c e - n a m e  N O T  A S S I G N E D  P R I M O S
User program has attempted to access an I/O device that has not been assigned to the user by a
PRIMOS command.

fi l e n a m e  N O T  F O U N D  O l d  fi l e  c a l l
File specified in subroutine call not found. [AH, SH]

N o t  f o u n d ,  fi l e n a m e  F i l e  S y s t e m
File specified in subroutine call not found. (Any file system subroutine.) [E$FNTF]

N o t  f o u n d  i n  s e g m e n t  d i r e c t o r y .  F i l e  S y s t e m
Filename specified in subroutine call not found in specified segment directory. (SRCHSS,
SGDR$$, SRSFXS) [E$FNTS]

N U L L  R E A D  U N I T  P R I M O S
Program has attempted to read with a bad unit number. This may be caused by the program
overwriting itself (array out of bounds).

O b j e c t  i s  c a t e g o r y - p r o t e c t e d .  F i l e  S y s t e m
You attempted to use EDIT_ACCESS on an object currently protected by an access category.
(AC$CHG) [E$CTPR]

O b j e c t  i s  d e f a u l t - p r o t e c t e d .  F i l e  S y s t e m
You attempted to use EDIT_ACCESS on an object that is currently default protected. (ACSCHG)
[ESDFPR]

O p e r a t i o n  i l l e g a l  o n  d i r e c t o r y .  F i l e  S y s t e m
User has tried to perform an illegal operation (such as editing) on a directory. [$DIRE]

O p e r a t i o n  p a r t i a l l y  b l o c k e d .  P R I M E N E T
An error has occurred in PRIMENET while attempting to process a remote request. [E$PRTL]

O p e r a t i o n  u n s u c c e s s f u l .  P R I M E N E T
An error has occurred in PRIMENET while attempting to process a remote request. [ESNSUC]

* * * * P A  n  R - m o d e  f u n c t i o n
PAUSE statement n (octal) encountered during program execution.

P a r e n t  n o t  a n  A C L  d i r e c t o r y .  F i l e  S y s t e m
An attempt was made to convert a password-protected directory to an ACL directory, but the parent
of the directory being converted was a password directory. (ACSSET, AC$DFT) [E$PNAC]

* * * *  p a u s e  n  V - m o d e  f u n c t i o n
PAUSE statement n (octal) encountered during program execution.

P I O  i n s t r u c t i o n  d i d  n o t  s k i p .  P R I M O S
An invalid PIO sequence has been issued (for example, attempting to start DMX activity before
loading the DMX channel address register). [E$DNSK]

Fifth  Edition  D-11



PRIMOS User's Guide

* * * * r i  R - m o d e  f u n c t i o n
Argument is too large for real-to-integer conversion. (C$12)

P o i n t e r  m i s m a t c h  f o u n d .  F i l e  S y s t e m
Internal file pointers have become corrupted. No user remedial action possible. System
Administrator must correct. [E$PTRM]

P r i o r i t y  A C L  n o t  f o u n d .  F i l e  S y s t e m
No priority ACL exists for the partition specified in a LIST_PRIORITY_ACCESS command.
(PASLST) [ESPANF]

P r o c e d u r e  n o t  f o u n d .  P R I M E N E T
An attempt has been made to call a PRIMOS routine that does not exist on a remote system. This
error can happen when there is a call from a new to an old Rev., and it is generated when a slave
takes a linkage fault. [E$PNTF]

Program  halt  at  segment  no./word  no.  R  mode  and  64V  mode
Program control has been lost. The program has probably overwritten itself or the load was
incomplete (R mode).

p r w fi l  b o f  O l d  fi l e  c a l l
Attempt by PRWFIL subroutine to access location before beginning of file. [PG]

p r w fi l  e o f  O H  fi l e  c a l l
Attempt by FRWFEL subroutine to access location after end of file. [PE]

p r w fi l  p o i n t e r  m i s m a t c h  O l d  fi l e  c a l l
The internal file pointers in the PRWFIL subroutine have become corrupted.

P R W F I L  U N I T  N O T  O P E N  O H  fi l e  c a l l
The PRWFEL subroutine is attempting to perform operations by using a PRIMOS file-unit number
on which no file is open.

P T R  M I S M A T C H  F j ] e  S y s t e m
Internal file pointers have become corrupted. No user remedial action possible. Consult your
System Administrator. (ATCH$$, CREA$$, GPAS$$, PRWF$$, RDEN$$, SATR$$, SRCH$$
SGDR$$)

Q u o t a  s e t  b e l o w  c u r r e n t  u s a g e .  F i l e  S y s t e m
You have set a quota on a directory, but the directory already contains more records than the quota
allows. This is a warning. (Q$SET) [E$QEXC]

T h e  r e m o t e  l i n e  i s  d o w n .  P R I M E N E T
The network connection between the local system and the remote system cannot be established.
[E$RLDN]

R e m o t e  s y s t e m  n o t  u p .  P R I M E N E T
An attempt has been made to access a remote system that is down. [E$RSNU]

R e q u i r e s  r e c e i v e  e n a b l e d .  P R I M O S
An attempt has been made to send a message without receive being enabled. [E$NRCV]

D-12  Fifth  Edition



Error Messages

* * * * r n  n  R - m o d e  f u n c t i o n
Device error or the end of file in the READ statement on FORTRAN logical unit n.

* * * * S E  R - m o d e  f u n c t i o n
Single-precision exponent overflow.

S E G - D I R  E R  O H  fi l e  c a l l
Error encountered in segment directory operation. [SQ]

S e g m e n t  d i r e c t o r y  e r r o r .  P R I M O S
Error encountered in segment directory operation. [ESSDER]

S e g m e n t  d i r e c t o r y  u n i t  n o t  o p e n .  F i l e  S y s t e m
Attempt has been made to reference a segment directory that is not open. (SRCH$$) [E$SUNO]

S e m a p h o r e  o v e r fl o w .  F i l e  S y s t e m
System error. [E$SEMO]

* * * *  S I N / C O S  -  A R G U M E N T  T O O  L A R G E  V - m o d e  f u n c t i o n
Argument too large for SEN or COS function.

S l a v e  v a l i d a t i o n  e r r o r .  P R I M E N E T
Either you are trying to access a remote system that requires user validation, and you did not issue
an ADD_REMOTE_ED command (to establish a remote ID), or a previous ADD_REMOTE_ID
command established a user ID, project ED, or password that was invalid on the remote system.
[ESSVAL]

* * * * S Q  R - m o d e  f u n c t i o n
Negative argument in SQRT or DSQRT function.

* * * *  S Q R T  -  A R G U M E N T < 0  V - m o d e  f u n c t i o n
Negative argument in SQRT function.

* * * * S T  n  R - m o d e  f u n c t i o n
STOP statement n (octal) encountered during program execution.

S t a c k  o v e r fl o w  i n  c r a w l o u t .  P R I M O S
System error. [E$CROV]

* * * *  S T O P  n  V - m o d e  f u n c t i o n
STOP statement n (octal) encountered during program execution.

* * * * S Z  R - m o d e  f u n c t i o n
Attempt to divide by zero (single-precision).

S y s t e m  c o n s o l e  c o m m a n d  o n l y .  P R I M O S
The command issued must be from the supervisor terminal. [ESSCCM]

To p - l e v e l  d i r e c t o r y  n o t  f o u n d  o r  i n a c c e s s i b l e .  F i l e  S y s t e m
An attempt to attach to a top-level directory has failed either because the directory does not exist,
because PRIMOS cannot reach the system where it does exist (if a remote system is down), or

Fifth  Edition  D-13



PRIMOS User's Guide

* * * * X X  R - m o d e  f u n c t i o n
Integer argument >32767.

because you do not have the right (Use, or U, access) to attach to it. You remain attached to the
previous current directory. (ATSANY, AT$) [ESNFAS]

U n a b l e  t o  fi n d  f a u l t  f r a m e .  C o n d i t i o n  m e c h a n i s m
A call was made to CNSIGS, but CNSIG$ could not find that any condition had been raised.

U N I T  i n  U S E  O H  fi l e  c a l l
Attempt to open a file on a PRIMOS file-unit already in use. [SI]

U n i t  i n  u s e  .  F i l e  S y s t e m
Attempt to open a file on a PRIMOS file-unit already in use. (SRCH$$) [E$UIUS]

U N I T  N O T  O P E N  O H  fi l e  c a l l
Attempt to perform operations with a file-unit number on which no file has been opened or which
is opened in the wrong mode (for example, a read to a unit open only for writing). [PD, SD]

U n i t  n o t  o p e n .  F i l e  S y s t e m
Attempt to perform operations with a file-unit number on which no file has been opened or which
is opened in the wrong mode (for example, a read to a unit open only for writing). (PRWF$$,
RDEN$$, SRCH$$, SGDR$$) [ESUNOP]

U N I T  O P E N  O N  D E L E T E  O l d  fi l e  c a l l
Attempt to delete file without having first closed it [SD]

* * *  U n k n o w n  a d d r e s s e e .  P R I M O S
The user ID you have specified to receive a message is not the ID of a logged-in user. [ESUADR]

* * *  U s e r  u s e r n u m b e r  b u s y ,  p l e a s e  w a i t .  P R I M O S
The user to whom you have sent a message already has a deferred message waiting. Only one
deferred message is allowed. You must send your message again. [ESUBSY]

* * *  U s e r  u s e r n u m b e r  n o t  r e c e i v i n g  n o w .  P R I M O S
The receive state of the user to whom you wish to send a message is either DEFER or REJECT
[ESUNRV]

U s e r  u n a b l e  t o  r e c e i v e  m e s s a g e s .  P R I M O S
An attempt to send a message to another user was not successful. [E$UDEF]

W a r m  s t a r t  o c c u r r e d .  P R I M O S
Any device connected to GPPI has received a reset signal. [ESWMSTJ

W r o n g fi l e  t y p e  .  F O R T R A N  I / O
You are trying to use direct access I/O when you declared the file to be sequential in the OPEN
statement, or vice versa. [E$WFT]

* * * * W N  n  R - m o d e  f u n c t i o n
Device error or end of file in WRITE statement on FORTRAN logical unit n.

D-14  Fifth  Edition



Error Messages

Batch Error Messages

r

This list of Batch messages and their meanings does not include FEXBAT messages. The
nature of each message is indicated in parentheses at the beginning of each explanation. The
following types of messages exist:

T y p e  M e a n i n g
Response The message is displayed in response to a command or in addition to the nor

mal response of a command. These are informative messages only; they do
not indicate that anything is wrong with your command or the Batch subsys
tem.

Warning The message is displayed to indicate that some part of your request or some
thing about the current state of the Batch subsystem may affect the successful
honoring of your request

Fatal The message is displayed to indicate that your request failed due either to an
error on your part or to the temporary inability of the Batch subsystem to hon
or your request.

Severe The message is displayed to indicate a severe error involving the Batch data
base. Typically, you have to mn FIXBAT, INIT, or even FIX_DISK to repair
the problem. (Running ENIT causes all Batch job data to be lost.)

Message The message is sent to the supervisor terminal. The severity of the message is
also indicated.

Query The message is displayed to elicit a response from you. Answer YES or NO,
as appropriate.

The messages, listed in alphabetical order, start with those messages that begin with variable
names.

extra-text  seen  when  end-of-line  expected.
(Fatal) extra-text has been entered when there should have been no more text (at the end of line). If
this message occurs after you enter the BATGEN command, you return to PRIMOS, and PRIMOS
displays the ER! prompt If this message occurs in response to a BATGEN command or
subcommand, an interactive user is left in command/subcommand mode, whereas a command file
or CPL program is aborted.

queue-priority  is  out  of  range.  -PRIORITY
(Fatal) The number queue-priority, supplied with the -PRIORITY option, was out of range. The
range for queue-priority is 0 through 9. Resubmit the job, using a valid value for queue-priority.

unit-number  is  out  of  range.  -FUNIT
(Fatal) The number unit-number, supplied with the -FUNIT option, was out of range. The range
for unit-number is 1 through 128. Resubmit the job, using a valid value for unit-number.

Another  user  is  running  FIXBAT  or  INIT.
(Message, Fatal) The Batch monitor cannot start up because another user is running the FIXBAT
program or the ENTT program. If you know who is mnning the program, wait until the program
finishes mnning, then restart the Batch monitor using BATCH -START. If you do not know who
is mnning the program, periodically attempt to restart the Batch monitor.

Fifth  Edition  D-15



PRIMOS User's Guide

Bad $$ command.
(Fatal) A file submitted using the JOB command has a $$ line as die first noncomment line, but the
$$ command is not a $$ JOB command. Change the file so that the $$ line is valid. The use of $$
is reserved for future expansion by BATCH.

Bad  queue  control  file.
(Severe) One of the Batch subsystem database files is inaccessible or has a bad format. The Batch
subsystem is inoperative until the database is fixed.

Bad  queue  definition  file  .
(Fatal) A file referenced by BATGEN does not comply to format requirements; it is not a valid queue
definition file. If this error occurs anywhere other than the BATGEN program, then the system Batch
definition file has been overwritten with invalid data, and the Batch subsystem is inoperative.

•BATCH*  Database  invalid.
(Message, Severe) The monitor logs itself out after sending this message, and the Batch system is
left inoperative. (Users receive error messages if they fry to invoke JOB or BATCH.) The System
Administrator should determine what the error is and fix it if possible. If the Batch monitor
generates a command output (log) file, that should reveal the source of the error. The file is named
0_LOG in BATCHQ (if the file BATCHQ>START_BATCH_MONJTOR.COMI runs
FIXBAT.SAVE with a -STARTUP argument other than NOLOG).
In general, if the exact cause of the problem is not known (such as a Pointer mismatch error in the
database or a disk write-protected error), ran FIXBAT. If that fails, resume the BATCHQ>ENIT
program using the -RESET_QUEUES option to reinitialize the entire database. If this doesn't
work, there are probably disk errors. If it does work, redefine the Batch queues using BATGEN
and start the Batch monitor up again. (All job data is deleted by the EMIT program.)

BATDEF  file  is  missing.
(Message, Fatal) The queue definition file, which is die crux of the database, is not present. The
monitor logs itself out after sending this message. The System Administrator should use BATGEN
to generate a new BATDEF file.

Can't  log  error.
(Message, Severe) An error has occurred that the monitor cannot record. (This message generally
accompanies other severe error messages.)

Can't  start  batch  job!
(Message, Fatal) The Batch monitor has not been started from the supervisor terminal, and it cannot
log in processes under different login names or log out other processes. The monitor logs itself out
after sending this message. Issue the BATCH -START command from the supervisor terminal if
this situation occurs.

(Changes made)
(Response) The changes specified in a JOB -CHANGE operation have been made. If the job is
initiated after the changes are made, then it executes with the specified changes in place. The job
status is displayed after the Changes made message is displayed.

Command  or  CPL  file  required  as  first  arg.  on  submission.
(Fatal) A JOB command has been given with job options (such as -HOME, -PRIORITY,
-CPTIME, and so on) but no CPL program name or command file name was specified. The
command format is

JOB pathname [options]

D-16  Fifth  Edition



Error Messages

Cpu  limit  must  be  specified.
(Fatal) The required -CPTIME option has not been supplied for a queue specified by a -QUEUE
option during job submission. (That is, the default CPU limit for that queue is greater than the
maximum CPU limit for that queue.) Resubmit the job with the -CPTIME option specified. To
determine the maximum limits for queues, use BATGEN -DISPLAY.

Creating  new  batch  definition  file:  pathname  (BATGEN)
(Response) The pathname specified does not exist When the FILE command is given, it creates the
specified file and puts the Batch queue definitions in it. BATGEN initializes its environment when
it cannot find pathname; therefore no queues are defined.

Date  and  time  not  set.  (Batch)
(Fatal) Either BATGEN or JOB command or a RESUME BATCHQ>ENIT command has been
issued from the supervisor terminal before the system date and time were set. These parts of the
Batch system cannot be run until the system date and time are set, using the SETfME command
from the supervisor terminal.

Elapsed  time  limit  must  be  specified.
(Fatal) The -ETIME option has not been specified for a particular queue. (That is, the default
elapsed time limit for that queue is greater than the maximum elapsed time limit for that queue.)
Resubmit the job with the -ETIME option specified. To determine the maximum limits for queues,
use BATGEN-DISPLAY.

End  of  line.
(Fatal) A required keyword or option was not present on the command line. The message generally
contains more information on what is expected. Reenter the command with the additional requested
information.

End  of  line.  Illegal  option-name  argument
(Fatal) A job parameter option, option-name, was specified last on die JOB command line or on the
$$ JOB tine, but had no argument (end of line). Supply the information required by option when
you reenter the command or modify the $$ JOB line accordingly.

End  of  line.  Queue  name  required
(Fatal) A command entered while in BATGEN command mode requires a queue name. (ADD,
MODIFY, BLOCK, UNBLOCK, and DELETE all require queue names.) Reenter the command
with the queue name desired.

End  of  line.  Value  required
(Fatal) While in BATGEN subcommand mode, a subcommand that requires at least one numeric
parameter has been issued, but no number was given. Subcommands requiring at least one numeric
parameter are CPTIME, ETIME, FUNET, PRIORITY, TIMESLICE, and RLEVEL. Note that the
CPTIME and ETIME subcommands accept two parameters, both of which can be the keyword NONE,
indicating no limits. Reenter the subcommand with the value desired. For example, TIMESLICE 10.

Enter  queue  characteristics  :
$

(Response) The ADD or MODIFY command, given while in BATGEN command mode, has
succeeded. You are now in BATGEN subcommand mode, identified by the $ prompt instead of the
> prompt used in BATGEN command mode. To reenter command mode from subcommand mode,
use QUIT or RETURN. RETURN saves the information modified while in subcommand mode;
QUIT discards it, asking for verification if any of it was changed.

Fifth  Edition  D-17



PRIMOS User's Guide

Environment  modified,  ok  to  quit?
(Query) A QUIT command has been issued while in BATGEN command mode, after the
environment was modified. Valid responses to this question are YES, NO, and OK. If YES or OK
is the response, a subsequent START command reenters BATGEN command mode with no loss of
information about the environment.

Error:  message-text  (program)  err=nnnn
(Message, Severe) An error occurred in die Batch subsystem, encountered either by the Batch
monitor, a Batch job, or a Batch user. Typically, other fatal error messages are sent to the
supervisor terminal and the database is invalidated. Use FIXBAT to fix the database. If this fails,
try running the EMT program, nnnn is the error code, program is the program or subroutine in
Batch that encountered die error, and message-text is additional information on the error.

Extraneous text on command line. (MONITOR)
(Fatal) A bad command line exists in BATCHQ>START_BATCH_MONITOR.COMI. The
command tine should read RESUME MONITOR or RESUME MONITOR -HUSH, but some
excess information currently follows the -HUSH option. Fix the command line in the file and
restart the Batch monitor.

File has no non-comment lines,  pathname (JOB)
(Fatal) A user has submitted a command file or CPL program, named pathname that either is empty
or is made up entirely of comment lines.

Force  logout  by  operator.
(Message, Response) The Batch monitor has been forcibly logged out It sends this message to
indicate that it has successfully logged out without leaving the Batch database in an indeterminate
state.

Home ufd  required.
(Fatal) The -HOME option was not present on die JOB command line or on the optional $$ JOB
line during submission, and JOB was unable to determine the attach point of the submitting job.
Resubmit the job, and include the -HOME option followed by the absolute pathname indicating
where the job is to execute. If the pathname is too long to fit, use a shorter version of it when you
resubmit the file. First, edit the file to include an ATTACH command with a relative pathname that
attaches down through the remaining subdirectories to reach the destination. Then, resubmit the job,
using the shortened version of the pathname.

Home=pathname
(Response) During job submission, the -HOME option has not been specified on the command line
or in the file ($$ JOB), but the job was successfully submitted. The JOB command determined the
home attach point of the submitting user to be pathname, and used this as the home attach point of
die submitted job.

Note
JOB does not attempt to determine whether the user can attach to the home directory as
owner. If the user cannot attach because of a bad password error or an insufficient access
rights error, the job terminates, and a requested command output file is not produced.

Illegal  -CHANGE  option.
(Fatal) The options -QUEUE and -PRIORITY are invalid during a -CHANGE operation using the
JOB command, because queue and queue priority of a job cannot be changed. Cancel or abort the
job and resubmit it to the appropriate queue with the desired queue priority.

D-18  Fifth  Edition



Error Messages

Il legal  answer.
(Warning) This warning is displayed when the answer to a question is not YES, NO, or OK. The
question is asked again. These questions are asked when you fry to QUIT out of BATGEN
command or subcommand mode after modifying the environment or queue.

I l legal  combination.  option
(Fatal) A job parameter (such as -ACCT, -HOME, -QUEUE, and so on) has been specified on the
same JOB command line as an option to perform a certain command such as -CANCEL,
-DISPLAY, -ABORT, and so on. option is the second (conflicting) option. Use separate JOB
commands to perform separate functions.

Illegal  combination.  -FUNIT  (JOB)
(Fatal) A CPL job has been submitted using the -FUNIT option. This option is not valid for CPL
jobs. Resubmit the job without the -FUNIT option.

I l l e g a l  l i m i t .
(Fatal) A parameter supplied to the -CPTIME or -ETIME option during job submission/changing
is not a valid limit. That is, it is less than or equal to zero or is not a valid decimal number, and it is
not the keyword NONE. Reenter the command with valid limits.

Illegal  name.
(Fatal) One of the Batch programs is expecting a name or command, but instead it reads an
unquoted token beginning with a hyphen (-), indicating that an option is present

Illegal  number,  n  (BATGEN)
(Warning) The numeric parameter n supplied for a BATGEN subcommand is not a valid decimal
number. Reenter the line with a valid decimal number. (All numbers input by the Batch subsystem
are decimal.) Subcommands that can return this error are CPTIME, ETEME, FUNIT, PRIORITY,
TIMESLICE, and RLEVEL. Note that the CPTEME and ETTME subcommands accept the keyword
NONE indicating no limits, but flag the number 0 as an invalid number. Also, these two
subcommands interpret the numbers as numbers ranging 1 through 999999999, whereas the
numbers for the other subcommands range 0 through 32767.

Illegal  number.  n  (JOB)
(Fatal) The numeric argument n supplied for the -FUNIT or -PRIORITY option during job
submission using the JOB command is not a valid decimal number. Reenter the command line with
valid numeric parameters.

I l l ega l  op t i on .
(Fatal) One of the Batch programs is expecting an option, namely, an unquoted token beginning
with a hyphen (-). Reenter die command line with a valid format

Illegal  queue  name  .  queue-name  (BATGEN)
(Warning) An attempt has been made to add a queue with a name (queue-name) that does not
comply with filename rules. (These rules are that the first character must not be a digit; and the
character set is limited to alphanumeric, and selected special characters). Reenter the command with
a valid queue name. Note mat a queue name of ALL is invalid, since the DELETE ALL command
would otherwise be ambiguous.

Illegal  queue  name,  queue-name  (JOB)
(Fatal) The queue name (queue-name) specified after a -QUEUE option while submitting or
changing a job does not comply with queue name format rules. Use BATGEN -STATUS or
-DISPLAY to determine the names of valid queues.

Fifth  Edition  D-19



PRIMOS User's Guide

Illegal  value,  value  (BATGEN)
(Warning) The parameter value supplied for the BATGEN RLEVEL subcommand is not valid.

In  pathname;
(Fatal) This opening phrase precedes JOB error messages when the errors originate in a $$ JOB line
within the file pathname. The error message also includes the $$ JOB line itself.

In  the  submission  file:
(Fatal) This opening phrase precedes JOB error messages when the errors originate in the $$ JOB
tine of a file, and the submission program cannot determine die file's pathname to display it.

Incorrect  username.
(Fatal) The username of die submitting user does not match the username in the $$ JOB line of a
file submitted using die JOB command. Edit the file and change the username in the $$ JOB line to
the username of the submitter. Note that a username of * means that any user may submit the file.

Info  in  "BATCHQ>ERROR.  "  .  (BILD$B)
(Severe) The source of an error has been successfully written to the file BATCHQ>ERROR. for
perusal by the System Administrator. (Note that the period is included in the pathname.) This
message is usually preceded and followed by other severe error messages.

***  Invalid  batch  database,  please  contact  your  system  administrator.
(Severe) This message means that the Batch subsystem program being mn has detected an error
(such as disk failure, pointer mismatch, or misprotected file) in the Batch system database. It flags
the database as invalid. Notify the System Administrator, who has the responsibility for
reinitializing the database, mnning FIXBAT, or running F1X_DISK, as appropriate. The BATCHand JOB commands are inoperative until the situation is resolved.

Invalid-COMO  pathname,  invalid  pathname  (JOB)
(Fatal) The format of the pathname specified with the -COMOUTPUT option to the JOB
command is invalid.

Invalid-DEFER  option  time,  invalid  time  (JOB)
(Fatal) The format of the time or date specified with the -DEFER option to the JOB command is
invalid.

Invalid  project  id.  invalid  project  id  (JOB)
(Fatal) Either the format of the project ID specified with the -PROJECT option to the JOB
command is invalid, or the user does not belong to the specified project.

?Job  jobname  (jobid)  job-status.
(Warning) An attempt has been made to use the JOB command on a job named jobname with an
internal job ID of jobid, but its status (job-status) prevented such an operation. Examples of such
attempts include frying to restart a completed job and attempting to release a job that is not held.

Job  jobname  for  username  (jobid)  job-status.
(Message, Response) The Batch monitor has changed the status of a job. (This message is not
displayed when the monitor changes a restarted job back to waiting), jobname is the external name
of the job, username is the submitting user, jobid is the internal job ID, and job-status is either
aborted or completed.

D-20  Fifth  Edition



Error Messages

Job  name  required.
(Fatal) A required job identifier (an internal job ID or external name) has not been specified with
one  of  the  following  options:  -CHANGE,  -CANCEL,  -ABORT,  -RESTART,  -HOLD,  and
-RELEASE. Reenter the command with the job identifier. For example,

JOB TOP -CHANGE -PRIORITY 9
JOB  #10032  -ABORT

(Job  no  longer  restartable)
(Response) A JOB -CANCEL has been performed on an executing job. The job itself was not
canceled, but it has been flagged as being unrestartable. In this state, use of the -RESTART option
aborts die job but does not restart it

(Job  not  changed.)  Queue  not  found,  queue-name  (JOB)
(Fatal) A request to change the characteristics of a job cannot be honored because the queue to
which the job was submitted (queue queue-name) cannot be found in BATCHQ>BATDEF. This is
an unusual error, but it can result if a queue is deleted at a particular moment during the JOB
-CHANGE operation.

Job  not  found.
(Fatal) The job referred to in a JOB command such as -CHANGE, -CANCEL, -ABORT,
-RESTART, -HOLD, or -RELEASE cannot be found by searching the active jobs list This can
mean one of three things: that no job exists with that name; that all jobs with that name have
completed, aborted, or canceled; or that a job exists with that external name but the user making the
request is not the same user who originally submitted the job.

(Job  not  restartable)
(Warning) A JOB -RESTART has been performed on an unrestartable job. An attempt is made to
abort the job after this message is displayed.

(Job  restarted)
(Response) A JOB -RESTART has been performed on a restartable job. Although an error message
can appear after this message, the job is generally restarted unless a JOB -CANCEL or JOB
-CHANGE -RESTART NO command is issued. One possible error message, Insufficient
access rights, may appear if the user is logged in as SYSTEM or BATCH_SERVICE and has
restarted another user's job from a user terminal, or if the process has recently logged out Not found
can also be displayed if the process is logged out.

Job  will  be  restarted.
(Message, Response) This message is displayed when Batch is first started. The message is sent to
the  supervisor  terminal  after  a  Job  jobname  for  username  (jobid)  aborted/
completed message is sent It means that the job is eligible for restarting, and is therefore being
reset to the waiting state. The message generally indicates that the job is restarted following a
system shutdown.

***  jobs  are  not  being  processed  at  this  time.
(Severe)  If  followed  by  ***  Please  contact  your  system  administrator
immediately, this message indicates that the Batch database has not been initialized or that
something has happened (such as a disk head crash). If followed by *** Please try again
later, it indicates that the Batch monitor was logged out using a method other than BATCH
-STOP, but the Batch monitor verifies the validity of the database when it is restarted. In either
case, the user is immediately returned to command mode, and the operation the user attempted is
not performed. This message may be displayed by the BATCH command or by the JOB command.

Fifth  Edition  D-21



PRIMOS User's Guide

- * >

'

Monitor  already  started.
(Response) Informs the operator that the monitor is already started.

Monitor  continued.
(Response and Message both) The Batch monitor has been continued. Jobs may now be started up.
This message is displayed as the result of a BATCH -CONTINUE command following an earlier
BATCH -PAUSE command.

Monitor  in  operation.
(Message, Response) Tells the operator that the Batch monitor has finished fixing the database (by
running FIXBAT) and is ready to process jobs.

Monitor  paused.
(Response, Message) The Batch monitor has been paused or has been started up in the paused state.
No jobs will be started up. Use BATCH -CONTINUE to continue the monitor.

Monitor  started  up.
(Response) Tells the operator that die monitor has been started up and is now going through an
initialization phase.

Multiple  jobs  with  this  name  (use  internal  name)  .
(Fatal) The job name used in the JOB command belongs to at least two jobs submitted by this user.
The job ID (internal name) must be used in this case. Use JOB -STATUS to determine the internal
and external names of all active jobs belonging to the user issuing the command.

Multiple  occurrence.
(Fatal) An option has been specified twice either on the JOB command line or on the $$ JOB line
during job submission or job changing (for example, JOB TEST -HOME HERE -HOME
THERE). (If an option is specified once on the JOB line and once on the $$ JOB line, no error
results; the parameter on the JOB line takes precedence.) Reenter the command, but specify each
option only once.

Multiple  monitors  illegal.
(Message, Fatal) An attempt has been made to start up a second Batch monitor. The monitor
sending this message logs out.

Must  be  first  option.
(Fatal) The option -CHANGE, -CANCEL, -ABORT, -RESTART, -STATUS, -DISPLAY,
-HOLD, or -RELEASE must be the first option on the JOB command line (after a sometimes-
optional job identifier).

My  disk  is  full.  Please  help  me.
(Message, Warning) The Batch monitor has encountered a Disk Full condition while frying to
initiate a job. It retries the job initiation every five minutes, sending this message after each
unsuccessful attempt This message causes a bell to ring at the supervisor terminal. Delete some
files from the disk to free up space.

My quota is exceeded. Please help me.
(Message, Warning) The Batch monitor has encountered a Quota Full condition while frying to
initiate a job. It retries die initiation every five minutes, sending this message after each
unsuccessful attempt This message causes a bell to ring at the supervisor terminal. Delete some -»
files from the disk to free up space or raise the quota set on the BATCHQ directory.

D-22  Fifth  Edition



Error Messages

No  active  jobs
(Response) Displayed by a JOB -DISPLAY or -STATUS command, this message indicates that
there are no waiting, held, or executing jobs belonging to the user. If die user is SYSTEM or
BATCH_SERVICE, then there are no jobs that are waiting, held, or executing in the entire system.
The JOB command may also display named jobname, with either for user username or in
system appended to the message, depending on whether the user specified a job name and
whether the user is privileged (logged-in as SYSTEM or BATCH.SERVICE).

No  configured  queues.
(Response) A BATGEN -STATUS or -DISPLAY command has been issued for a Batch definition
file that has no defined queues.

No  job  changes  specified.
(Fatal) The -CHANGE option has been given to the JOB command, but no actual changes were
specified on the command line. Reenter the command, specifying changes to be made following
the -CHANGE option on the command line.

No  longer  executing.
(Fatal) A JOB -ABORT or JOB -RESTART has been performed on a job that had execution
status, but by the time the execution file was read in to determine the user number of the process,
the process had disappeared. If the message (Job restarted) is displayed, then the job has
restarted. Although the operation itself was unsuccessful, the desired results have been achieved.

No  queue  available  for  job.
(Fatal) A job submitted with the JOB command did not specify a -QUEUE option, and no suitable
queue can be found. Suitability requirements include CPU and elapsed time limits within the
confines of the queue, queue unblocked, and so on. Use the BATGEN -STATUS or -DISPLAY
command to display a list of valid queues and their status.

No  queues  have  waiting  or  held  jobs.
(Response) A BATCH -DISPLAY command has been issued, and no queues had any waiting or
held jobs. A queue can have one executing job not considered to be waiting or held.

No  right.  Must  be  Batch  Administrator  or  Console
(Fatal) A -HOLD or -RELEASE operation has been attempted using the JOB command, and the
user was not a Batch Administrator or using the supervisor terminal.

No  running  jobs.
(Response) A BATCH -DISPLAY command has been issued, and no jobs were mnning. Jobs can
be waiting when no jobs are running, even when the monitor is mnning and there are free
phantoms. There is always a small amount of turnaround time between submittal and execution of a
job.

Not  an  absolute  treename.
(Fatal) The home directory specified with the -HOME option of the JOB command is a relative
pathname (beginning with *>). Resubmit the job, giving an absolute pathname after the -HOME
option.

Not  your  job.
(Fatal) A job has been referenced using an internal name in the JOB command, but the job does not
belong to the user making the reference. Use the JOB -STATUS command to obtain a list of all
active jobs submitted by the requesting user.

Fifth  Edition  D-23



PRIMOS User's Guide

Note  :  the  batch  monitor  is  currently  not  starting  up  jobs  .
(Response) A Batch subsystem command has been issued while the Batch monitor is in a paused
state. No jobs are started up while the monitor is paused.

Null  home  ufd.
(Fatal) The home directory specified with the -HOME option of the JOB command is a null string.
Resubmit the job with an absolute pathname after the -IIOME option.

Operator  stop.
(Message, Response) The monitor received a stop request via a BATCH -STOP command. The
monitor logs out after sending this message.

Out  of  range.
(Warning) A BATGEN subcommand has been given a numeric parameter that is out of range for
that subcommand. The ranges are 1 through 128 for FUNIT, 0 through 9 for PRIORITY, 1 through
99 for TIMESLICE, and 0 through 7 for RLEVEL. Reenter the subcommand with the correct
parameter.

Please  FILE.
(Warning) A QUIT command has been issued while in BATGEN command mode, after the
environment  has  been  modified;  the  question  Environment  modified,  ok  to  quit?  has
been asked, and the answer was NO. This message is a reminder to use FILE to create a modified
environment

Please RETURN.
(Warning) A QUIT subcommand has been given while in BATGEN subcommand mode, after the
queue  characteristics  have  been  modified;  the  question  Queue  definition  modified,  ok
to quit? has been asked, and the response was NO. This message is a reminder that the proper
way to leave a subcommand session is to use the RETURN subcommand.

Please  wait.
(Response) This message asks that the users be patient because the current program has been
monopolizing the Batch database and other processes now have access to it. It is not a fatal error. It
generally occurs only when a system is heavily loaded or when the user's program has a very low
priority and does not run frequently.

Queue  gueue-name  already  exists  (queue-status)  .
(Warning) While in BATGEN command mode, an attempt has been made to add a queue named
queue-name that already existed, queue-status is blocked, unblocked, or flagged for deletion. To
change the queue definition, use the MODIFY subcommand. However, if the queue is flagged for
deletion, any attempt to block, unblock, modify, or display it causes the Unknown queue name
message to be displayed.

Queue  queue-name  deleted.
(Message, Response) Queue queue-name, flagged for deletion in the BATDEF file, has just been
deleted by the Batch monitor because the queue became empty.

Queue  queue-name  flagged  for  deletion.
(Warning) While in BATGEN command mode, an attempt has been made to delete a queue named
queue-name that was already flagged for deletion. To allow the queue to disappear, use FILE to
write out the BATDEF file. The queue disappears when it contains no more waiting, held, or -,
executing jobs. It can then be added again.

D-24  Fifth  Edition



Error Messages

Queue  blocked.
(Fatal) The queue referred to by a -QUEUE option during job submission is currently blocked to
new submissions. Try it again later, or use another queue. Use the BATGEN -STATUS to display
a list of all queues.

Queue  definition  modified,  ok  to  quit?
(Query) A QUIT subcommand has been issued while in BATGEN subcommand mode, and the
characteristics of the queue being added or modified have been changed Valid answers to this
question are YES (or carriage return), NO, and OK.

Queue  deleted.
(Fatal) A job has been submitted to an available queue, but by the time the file was copied and
some other activities had taken place, the queue had been deleted. The job should be resubmitted to
a different queue.

Queue  does  not  exist.
(Fatal) The -QUEUE option on the JOB command line or the (optional) $$ JOB line referred to a
queue that either did not exist or was in the process of being deleted (flagged for deletion). The
BATGEN -STATUS command provides a list of currendy available queues and the status of each
queue.

Queue  files  not  corect  rev.
(Severe) The queue control files in the Batch database are not up to date with the revision of
PRIMOS mnning on your system. Shut the Batch subsystem down, ran the ENTT program, and then
start the Batch subsystem up again.

Queue  full.
(Fatal) The queue to which the user has fried to submit the job already contains 10,000 jobs
(whether active or inactive). The queue becomes available as soon as one of the jobs runs to
completion. Meanwhile, use any other available queues.

Register  setting.
(Fatal) Register settings are invalid in die Batch subsystem, except as part of a submitted file.
Reenter the command line without die register setting. (A register setting is two octal numbers
separated by a slash, such as 1/15.)

Removed queue-name from BATDEF
(Message, Response) This message is sent to the supervisor terminal when the Batch monitor finds,
in the BATDEF file, a queue that is flagged for deletion but that has never been used. The message
indicates that queue queue-name has been deleted from BATDEF and that no job data has been lost
as a result

Specif  ied  value  is  out  of  range.
(Fatal) The -CPTIME or -ETIME option specified during job submission or a -CHANGE
operation is greater than the maximum allowed by the queue to which the job was submitted. This
message is preceded by a message indicating the maximum limit for that queue (Cpu limit isn
or Elapsed time limit is n). If the limits cannot be lowered so that the job can be
successfully run, try a queue with higher limits.

Stop  request  issued.
(Response) The BATCH -STOP command has requested that the Batch monitor stop. Within 20
seconds the monitor sends an Operator Stop. message to the supervisor terminal and logs out.

Fifth  Edition  D-25



PRIMOS User's Guide

Syntax  error.  Register  settings  are  illegal
(Warning) A register setting (such as 1/15) has been found when no more information was
expected. Reenter the command without register settings.

This  job  cannot  be  restarted.
(Response) This message is displayed by a JOB -DISPLAY command if the job being displayed
cannot be restarted. A job is not restartable if a JOB -CANCEL command is issued for that job
while it is executing, or if it is submitted with the -RESTART NO option. An attempt to restart the
job aborts it without restarting it.

(This  job has already executed >n> time (s)  .)
(Response) This message is displayed by a JOB -DISPLAY command if the job being displayed is
executing and has already been executed (n times). The condition is caused by a JOB -RESTART
or by a system cold start after shutdown while the job is executing.

This  job  will  be  restarted.
(Response) This message is displayed in response to a JOB -DISPLAY command if a JOB
-RESTART has been done but the job is still executing. When the monitor sees that the job has
aborted or completed, it returns the job to the waiting state.

Too many options .
(Fatal) At least two conflicting options are entered, such as JOB -DISPLAY -CHANGE or JOB
TEST -ABORT -CANCEL. Use separate JOB commands to perform separate operations.

Too many queues.
(Warning) An attempt has been made, using the ADD command in BATGEN, to add a queue when
there are already 16 defined queues (blocked, unblocked, or flagged for deletion).

Unable  to  validate  project,  project  id  (JOB)  Please  contact  system
administrator.  (JOB)

(Fatal) A problem has arisen accessing the SAD.

Unknown command.
(Warning) An unrecognized command has been entered while in BATGEN command mode. The
user is left in BATGEN command mode.

- >

"

'

D-26  Fifth  Edition



Error Messages

Unknown  option,  -option  entry  (JOB)
Usage:

JOB  treename  [-batch_options]  [-ARGS  cpl_args]
-HOme  homedirectory
-QUEue  queuename
-CPTime  cpulimit
-ETime  elapsedl imit
-DeFer  date.t ime/-No-DeFer
-COMOutput  comopathname/-No_COMOutput
-Not  iFY/-No_Not  iFY
-PROJect  projid

jobid  -CHanGe  [-batch_options]  [-ARGS  cpl_args]
-CANcel
-ABor t
-ReSTart
-STatus
- D i s P l a y

(Fatal) User has requested unknown option.

Unknown queue name.
(Warning) A command entered while in BATGEN command mode refers to a queue that either
does not exist or is flagged for deletion by the DELETE command.

Unknown -STARTUP argument, .keyword (FIXBAT)
(Message, Fatal) The keyword supplied to the -STARTUP option is not SAVE, DELETE, SPOOL,
or NOLOG.

Unknown subcommand.
(Warning) While in BATGEN subcommand mode, an unrecognized subcommand has been given.
The user is left in subcommand mode.

Unrecognized  command  line  option  .
(Message, Fatal) The Batch monitor has been invoked with an unrecognized option on the
command line. The only valid MONITOR option is -HUSH. Fix the file START_BATCH_
MONJTOR.COMI in the BATCHQ directory accordingly, and restart the Batch monitor using
BATCH -START.

Unrecognized  option.
(Fatal) BATGEN has been invoked with an unrecognized option on the command line. The only
valid BATGEN options are -STATUS and -DISPLAY.

Warning:  -DEFER  option  time  already  passed.  Job  is  now  waiting  (not
deferred).  (JOB)

(Warning) User has submitted job with a defer time that is earlier than the current time.

Warning:  jobs  are  not  being  processed  at  this  time  .
(Response) This message means that the Batch monitor is not running; therefore, any submitted
jobs are not executed until it is started up.

Fifth  Edition  D-27



Ed Command Summary

This appendix contains an alphabetic list of all ED commands and their functions. Acceptable
command abbreviations are shown in red. For a detailed description of all commands, see the
Editor Reference Section of the New User's Guide To EDITOR and RUNOFF.

Note
The string parameter in a command is any series of ASCII characters including leading, trailing,
or embedded blanks. A semicolon terminates the command unless it appears within delimiters
(as in the CHANGE, MODIFY, or GMODEFY commands) or is preceded by the escape
character (A).

r

Command
APPEND string
BOTTOM

BRIEF

CHANGE/string-l/string-2/[G] [«]

DELETE [ii]

DELETE TO string

DUNLOAD filename [n]

DUNLOAD filename TO string

ERASE character
FILE [filename]

Function
Appends string to the end of the current line.
Moves the pointer to a null line beyond the last line of
the file.
Speeds editing by suppressing the (default) verification
responses to certain ED commands.
Replaces string-1 with string-2 for n lines. If G is omit
ted, only the first occurrence of string-1 on each line is
changed; if G is present, all occurrences on n lines are
changed.
Deletes n lines, including the current line (default
n= l ) .
Deletes all lines up to but not including the line contain
ing string.
Deletes n lines from the current file and writes them
into filename. (Default » = 1.)
Same as DELETE...TO, but writes deleted lines into
filename.
Sets erase character to character.
Writes the contents of the current file into filename and
QUITs to PRIMOS. If filename is omitted, ED writes
into the current file and displays its name.

Fifth  Edition  E-1



PRIMOS User's Guide

FIND string

FIND(n)  string

FNAME

GMODIFY

IB string

f  ASR
INPUT <^ PTR

t  TTY
INSERT string
KILL  character
LINESZ  [n]

LOAD filename
LOCATE string

LOCATE string, *

MODE CKPAR

MODE COLUMN

MODE COUNT [start] [increment] [width]

MODE NCKPAR
MODE NCOLUMN
MODE NCOUNT
MODE NUMBER
MODE NNUMBER
MODE NOSEMI

Moves the pointer down to the first line beginning with
string.
Moves the pointer down to the first line in which string
starts in column n.

Displays the name of the current file during an editing
session.
Allows the user to enter a string of subcommands that
modify characters within a line.
The INSERT BEFORE command inserts string as a
new line immediately before the current line.
Reads text from the specified input device: ASR (tele
type paper-tape reader), PTR (high-speed paper tape
reader) or TTY (terminal). Default is TTY.

Inserts string after the current line.
Sets kill character to character.

Changes maximum line size (that is, length) of both
command lines and input lines. This length, which is
1024 at start-up, may be set in the range 10 through
1024.
Loads filename into the text following the current line.
Moves  pointer  forward  to  the  first  line  containing
string, which may contain leading and trailing blanks.
Moves pointer forward to each occurrence of string
between pointer's current position and the end of file.

Displays characters as real characters if parity is on, as
octal numbers (Annn) if parity is off.

Displays column numbers whenever INPUT mode is
entered.

f  PRINT  ^|
<  BLANK  Y
I SUPPRESS J
Turns on the automatic incremented counter.

Displays all characters as if they had parity on (default).
Turns off the column display (default).

Suspends counter incrementing (default).
Displays line numbers in front of the displayed line.
Turns off the line number display (default).
Turns off the line terminator function of semicolons,
allowing semicolons to be used as a regular print char
acter in INPUT mode.

E-2  Fifth  Edition



MODE PRALL

MODE PRUPPER

MODE PROMPT

MODE NPROMPT

MODE SEMI
MODIFY/string-2lstring-l/[G][n]

M°™--'{,X2}
NEXT [n]

NFIND string

NFIND(n) string

NLOCATE string

OOPS

OVERLAY string

PAUSE

POINT line-number
PPRINT [first] [last]

r

Ed Command Summary

Displays lowercase characters if the device has that ca
pability.
Displays all characters as uppercase. Precedes lowercase
characters with a AL and precedes uppercase characters
with a AU if the device is uppercase only.

Displays  prompt  characters  for  INPUT and  EDIT
modes.

Stops displaying of INPUT and EDIT prompt charac
ters (default).
Uses semicolons as line terminators (default).

Superimposes string-1 onto string-2 for n lines. If G is
omitted, only the first occurrence of string-1 on each
line is modified; otherwise, all occurrences of string-1
are modified.

Moves string or contents of buffer-2 into buffer-1.

Moves the pointer n lines forward or backward (default
n = 1).
Moves the pointer down to the first line not beginning
with string.
Moves the pointer down to the first line in which string
does not start in column n.
Finds the first line that does not contain string any
where in the line.
Undoes the last line changed and returns it to its status
before the modification.

Superimposes string on the current line. Use tabs to
start in the middle of the line. Use ! to delete existing
characters. (A blank in the string leaves the old charac
ter in place.)
Returns  temporarily  to  PRIMOS  for  the  use  of
PREMOS-level commands. START returns to the pre
vious ED position.
Relocates the pointer to line-number.
The PPRINT command displays a range of lines rela
tive to the current position without changing the current
position:

first Number of lines away from current position
to start displaying

last Number of lines away from current position
to stop displaying

If only one positive number is specified, it is interpreted
as the ending-line position (last) and the default starting
line is the current line.

Fifth  Edition  E-3



PRIMOS User's Guide

PRINT [n]

PSYMBOL

PTABSET tab-l...tab-8

PUNCH { J«M |

QUIT

QF

RETYPE string
SAVE [filename]

SYMBOL name character

If only one negative number is specified, it is interpret
ed as the beginning-line position (first) and the default
ending line is the current line. If no numbers are given,
the default is PP -5 5, which displays from five lines
above to five lines below the current position.
Displays the current line or n lines beginning with the
current line. Moves the pointer to the last line dis
played.
Displays a list of current symbol characters and their
function.
Provides for a setup of tabs on devices that have physi
cal tab stops.
Punches n lines on high-speed or low-speed paper-tape
punch.

Returns control to PRIMOS without filing text. If file
has been modified, ED warns user and asks: OK TO
QUIT?
The QUIT FINAL command lets the user QUIT out of
a modified file without having ED ask if it may throw
away the work file.
The current line is replaced by string.
Saves file without leaving ED. If user does not specify
filename, ED saves into die file being edited and dis
plays its name.
Changes a symbol name to character. Current default
values are

" >

- .

TABSET tab-l...tab-8

TOP

UNLOAD filename [n]

Name Default Characters
KILL
ERASE ■>■>
WELD
BLANK
TAB
ESCAPE
SEMICO
CPROMPT
DPROMPT

Sets as many as eight logical tab stops to be invoked by
the tab symbol (\).
Moves the pointer to a null line before the first line of
text
Copies n lines into filename.

E-4  Fifth  Edition



UNLOAD filename TO string

VERIFY

WHERE
XEQ [buffer]

*[n]

Ed Command Summary

Unloads lines from current file into filename until
string is found.
Displays each line after completion of certain com
mands (default).
Displays the current line number.
Executes the contents of buffer. If no buffer name is
given, the last command line is reexecuted.
Causes the preceding command to be repeated n times
as in

F  /;D;*10

which deletes the next ten lines that begin with I .li n
is omitted, the command repeats until the bottom of the
file is reached.

ED Defaults
INPUT (TTY)

LENESZ 144

MODE NCKPAR

MODE NCOLUMN

MODE NCOUNT

MODE NNUMBER

MODE NPROMPT

MODE PRALL

VERIFY

r
r Fifth  Edition  E-5



PRIMOS User's Guide

ED Symbols

TABLE E-1
ED Symbols

Character Name Interpretation

# BLANKS Match n spaces (with FEND, NFIND)

@ COUNTER MODE COUNT'S counter symbol

$ CPROMPT MODE PROMPT'S edit prompt

& DPROMPT MODE PROMPT'S input prompt

»t ERASE Character erase

A. ESCAPE Logical escape (see Notes below)

? KILL Line kill

! SEMICO End of line or command

\ TAB Logical tab
I WELD Match any character (with FEND, NFEND)

Notes
Users may change any of these special characters from within the ED editor, with the SYMBOL
command.
Nonprinting characters may be entered into text with the ED editor by using the logical escape
character (A is the default escape character) and the octal value. The nonprinting character is
interpreted by output devices according to their hardware. For example, typing A207 (where A =
escape) enters one character into the text.

E-6  Fifth  Edition



Directory  Passwords

~

~

Directory passwords provide an alternative to Access Control Lists (ACLs) as a protection
system for controlling the use of files and directories. This appendix describes how to use the
password system. In particular, it describes how to

• Assign passwords to directories (PASSWD)
• Use passwords to gain access to directories
• Set specific access rights on file system objects (PROTECT)
• Convert a password directory to an ACL directory (SET_ACCESS)
• Convert an ACL directory to a password directory (REVERT_PASSWORD)
• Create a password subdirectory under an ACL directory (CREATE)

Note
Because ACLs are more flexible than passwords and offer greater protection, most systems use
ACL protection. The information in this appendix is provided primarily for users of systems
where passwords have been in use, and where the change to ACLs has not happened or is not
yet complete.

Assigning Directory Passwords
You can secure your directories against unauthorized users by assigning passwords with the
PASSWD command. The two levels of passwords are owner and non-owner. If you give the
owner password in an ATTACH command, you have owner status; if you give the non-
owner password in an ATTACH command, you have non-owner status. If you fail to give a
required password correctly in an ATTACH command, PREMOS returns the message Bad
password and does not execute the ATTACH command. File system objects within a
password-protected directory can be given different access rights for owners and non-owners
with the PROTECT command. (See Setting Access Rights on File System Objects, below.)

The PASSWD command either replaces any existing password(s) on the current directory with
one or two new passwords or assigns passwords to this directory if there are none. The format is

PASSWD [owner-password [non-owner-password]]

Fifth  Edition  F-1



PRIMOS User's Guide

The owner-password is specified first; the non-owner-password follows.
For example, assume the current directory has no password:

OK, PASSWD US THEM
OK,  PASSWD NIX  TRIX
OK,

The first command line sets the owner password US and the non-owner password THEM on
the current directory. The second command line changes the owner password from US to
NIX and the non-owner password from THEM to TREX.
Passwords may contain almost any characters, but they may not begin with a digit (0-9).
If an owner-password is specified and a non-owner-password is not specified, the default for
the non-owner password is null; then, any password (except the owner password) or none
allows access to this directory as a non-owner.
If the PASSWD command is given alone, without either an owner-password or a non-owner-
password, then the owner-password is set to blanks and the non-owner-password is set to
null. Specifying no password gives access to the directory as an owner, specifying any
password gives access to the directory as a non-owner. The PASSWD command given alone
is useful when you wish to remove passwords from a directory.
You must have owner status on a directory in order to use the PASSWD command.

Using Passwords to Gain Access to Directories
If a directory has a password, the password must be given whenever the directory name is
given. The password is entered after the name of the directory, separated by one blank space.
For example, assume ROCKET is the owner password for the directory JONES. The
command

OK,  ATTACH  JONES  ROCKET

connects you to JONES with owner status.
If a password is used in a pathname, apostrophes enclose the entire pathname. For example,

OK, ATTACH 'MAPLE HIDDEN>BRANCH4'

Setting Access Rights on File System Objects
Specific access rights to the objects (files, segment directories, and subdirectories) within a
password-protected directory can be established by using the PROTECT command. This
command sets the protection codes for users with owner and non-owner status in the
directory. The format is

PROTECT pathname [owner-rights] [non-owner-rights] [-REPORT]

F-2  Fifth  Edition



Directory Passwords

Argument/Option  Meaning
pathname The name of  the object  to  be protected
owner-rights A code specifying owner's access rights to the object
non-owner-rights A code specifying the non-owner's access rights to the object
-REPORT An option specifying that the results of executing the command be reported to

the user

The values and meanings of the protection codes are

Code Rights
NIL No access of any kind allowed
R Read only
W Write only
D Delete only
RW Read and Write
RD Read and Delete
WD Write and Delete
RWD Read, Write, and Delete (All access)

r

To use the PROTECT command on objects in a directory, you must have owner status on the
directory. For example,

OK, PROTECT MYDIR>LETTER RWD R

In this example, protection codes are set on the file LETTER in the directory MYDER so that
All access rights are given to the owner and only Read access is given to the non-owner.

Notes
The default access codes associated with any newly created object are RWD NIL. The owner is
given All rights and the non-owner is given None. Default values for the PROTECT command,
however, are NEL NIL. Thus, the command PROTECT MYFILE denies All rights to owner and
non-owner alike. The owner can always recover from this situation because he can change the
protection codes again and grant himself All access rights.
Although the PROTECT command may be used to modify the protection codes of objects in
ACL directories, the ACL mechanism takes precedence and the codes are ignored when the
object is accessed. If the ACL directory is converted to a password directory, the protection
codes establish their designated owner and non-owner access rights. To use the PROTECT
command for objects in an ACL directory, you must have Protect (P) access to the directory.

Converting a Password Directory to an ACL Directory
Conversion from a password directory to an ACL directory is done automatically whenever
the SET_ACCESS command (explained in Chapter 5) is given on a password directory
whose parent is an ACL directory. The command does not convert a password directory
whose parent is a password directory.

Fifth  Edition  F-3



PRIMOS User's Guide

To convert a directory, you must either have Protect rights to the parent directory or there
must be no owner password in the directory being converted.

Note
To convert a directory with passwords when you do not have Protect access to the parent, give
this sequence of commands:

ATTACH directory-pathname password
PASSWD
SET_ACCESS directory-pathname acl

If you do not have Protect access to the parent directory, you must supply an ACL with the
SET_ACCESS command, giving yourself access rights, or you lose access to the directory after
it is converted. PRIMOS warns you if this situation is about to occur, and allows you to abort
the SET.ACCESS command.

Examples
In example one, you wish to convert the password directory HAND (with the pathname
GLOVE>HAND) to an ACL directory with default ACL protection. GLOVE is an ACL
directory. If you are attached to GLOVE, give the command

OK, SET_ACCESS HAND

If you are attached elsewhere, give the command

OK,  SET_ACCESS  GLOVE>HAND

PRIMOS responds with the OK, prompt, and HAND is now protected by the same ACL that
protects GLOVE.
In example two, you wish to convert the password directory FOOT (with the pathname
SHOE>SOCK>FOOT) to an ACL directory with the same protection existing on SHOE.
SHOE is an ACL directory, but SOCK is a password directory. The command

OK, SET_ACCESS SHOE>SOCK>FOOT

fails because the parent directory of FOOT is also a password directory. To convert FOOT,
you must first convert SOCK and then convert FOOT.
In example three, to convert an entire subtree, you may use the wildcard and treewalking
capabilities of PREMOS, explained in Chapter 6:

OK,  SET_ACCESS  *>@>@  -WALK_FROM  1  -DIR

F-4  Fifth  Edition



Directory Passwords

r

Converting an ACL Directory to a Password Directory
To convert an ACL directory to a password directory, use the command

OK,  REVERT_PASSWORD

The command takes no arguments and converts the current directory only. You must
therefore be attached to the directory you wish to convert. The following constraints also
apply:

• You must have Protect (P) access to the directory before you convert it.
• When you convert a directory, its original password(s) and protection codes are

reactivated.
• You may not have ACL-protected subdirectories under a password directory. Therefore,

if you give the REVERT_PASSWORD command for a directory that contains ACL-
protected subdirectories or any access categories, the command fails.

Note
If you convert an ACL directory to a password directory or vice versa and wish to use the LD or
LIST_ACCESS command to check the conversion, you must reattach to the directory for the
changes to take effect Access rights are calculated when you first attach to the directory, and
the access is not recalculated to reflect the change until you attach somewhere else. If you
convert your origin directory and subsequently use the ORIGIN command, the directory is not
converted. For the ORIGIN command to reflect the conversion, you must log out and then log in
again.

Example
Consider the subtree SHERT>SLEEVE>CUFE You wish to convert ACL directory SLEEVE
to a password directory. CUFF is also an ACL directory. If you attach to SLEEVE and give
the REVERT_PASSWORD command, the command fails. You get the error message at the
end of the following sequence:

OK, ATTACH SHIRT>SLEEVE
OK, REVERT_PASSWORD
Directory  st i l l  conta ins  ACL  subdirector ies.  <Current  d i rectory>

(rever t_password)
ER!

To convert SLEEVE to a password directory, you must first convert CUFF to a password
directory. Then you can convert SLEEVE (because SLEEVE no longer contains any ACL
subdirectories). The following sequence illustrates the conversion:

OK, ATTACH SHIRT>SLEEVE>CUFF
OK, REVERT_PASSWORD
OK, ATTACH SHIRT>SLEEVE
OK, REVERT_PASSWORD
OK,

Fifth  Edition  F-5



PRIMOS User's Guide

Creating a Password Subdirectory Under an ACL Directory
The CREATE command allows the creation of a password subdirectory under an ACL
directory. You must have Add (A) access to the parent directory to create a new subdirectory.
The format is

CREATE pathname [-PASSWORD]

Specifying -PASSWORD creates a password subdirectory. If the option is omitted, the
CREATE command creates a subdirectory of the same type as its parent directory.
You cannot create an ACL directory under a password directory.

F-6  Fifth  Edition



System Information

PRIMOS supports many commands that provide useful information about the availability and
current usage of system resources. The following table summarizes the information available
and the commands to obtain it. All of these commands are fully explained in the PRIMOS
Commands Reference Guide.
Further commands, called System Information and Metering (SEM) commands, may be
available if your System Administrator has established user access to them. These commands
are fully documented in the DSM User's Guide.

Note
The STATUS ALL command gives information provided by all of the STATUS commands listed
below (except STATUS PROJECTS). The STATUS USERS command gives a wide variety of
information about user IDs, user numbers, and line and device assignments on your system.

Information on

ACLs

Batch

PRIMOS Commands

LIST_ACCESS [pathname]

LIST_GROUP

BATCH -STATUS

BATCH -DISPLAY

Use

Lists access rights to a file system
object

Lists your user groups

Shows number of waiting, deferred,
or held jobs

Lists user IDs, job IDs, and queue
numbers

JOB -STATUS

JOB -DISPLAY

BATGEN -STATUS

Lists Batch jobs for your user ED

Displays detailed information on
your Batch jobs

Lists available batch queues

Fifth  Edition  G-1



PRIMOS User's Guide

Information on PRIMOS Commands

BATGEN -DISPLAY

Command  Environment  LISTJJMTTS

LIST.EPF

LIST SEGMENT

Disks

File System

File Transfer

Global Variables

Messages

Network

Printers

Projects

Spool

STATUS DISKS

AVAIL [diskname]

LIST_QUOTA [pathname]

STATUS UNITS

LD-SIZE
SIZE pathname

FTR -STATUS

FTR -DISPLAY

LISTJ/AR

MESSAGE -STATUS

STATUS NETWORK

LIST_REMOTE_ID

PROP -STATUS

PROP [environment-name]
-DISPLAY

STATUS PROJECTS

SPOOL -LIST

Use

Displays detailed information on
the batch queues

Shows your command environment
limits

Lists EPFs mapped to your address
space

Lists segments you are using and
shows your access

Shows disks visible on your system

Shows space available on a logical
disk

Shows directory quota and number
of records used

Shows file-units you have open

Show sizes of files

Lists your transfers

Displays detailed information on
each transfer

Lists global variables in active
global variable file

Shows receive states

Tells if network is available and
what systems are configured

Lists the remote EDs you have add
ed with ADD_REMOTE_ED

Lists environment names for avail
able printers

Displays detailed information on a
specific printer

Lists users and their project names

Shows contents of spool queue

G-2  Fifth  Edition



Information on

Terminal Settings

Time and Date

Tape Drives

Users

PRIMOS Commands

TERM -DISPLAY

DATE

TIME

STATUS DEVICE

STATUS USERS

STATUS ME

System Information

Use

Shows current terminal settings

Shows current date and time

Shows your usage of system
resources

Lists logical and physical device
numbers of tape units assigned to
users

Shows IDs of all users on the sys
tem along with user numbers and
assigned lines and devices

Shows the same information as
STATUS USERS, but for your user
ID only

r
r Fifth  Edition  G-3



Index



Index

r
r

Symbols
" character, 1-8
SS JOB, 16-12
? character, 1-8
~, syntax suppression character, 6-13

Numbers
321 mode, 10-5
32IX mode, 10-6
64V mode, 10-5

A access, 5-26
ABBREV command, 8-4

ADD option, 8-6
ADD_ ARGUMENT option, 8-6
ADD_COMMAND option, 8-5
CREATE option, 8-4
DELETE option, 8-8
format, 8-4
LIST option, 8-9
OFF option, 8-8
ON option, 8-8

Abbreviation files
activating, 8-8
creating, 8-4

Abbreviations
defining, 8-5
deleting, 8-8
global variables in, 8-12
listing, 8-9
multiple commands, 8-6
using, 8-9
variables in, 8-7

ABORT, option of JOB command, 16-12

Absolute pathnames, 2-6
ACCEPT, option of MESSAGE

command, 8-17
Access categories, 2-2, 5-2, 5-9

creating, 5-11
deleting, 5-14
listing contents, 5-10
modifying, 5-13
protecting objects with, 5-10
replacing the contents of, 5-12
symbol, 2-2

Access control list
see: ACLS

Access rights, 5-1
Add (A), 5-26
ALL, 5-27
Delete (D), 5-24
Execute (X), 5-27
in password-protected directories, F-2
List (L), 5-26
list of, 5-2
listing, 5-3
matching, 5-20
NONE, 5-27
overlapping, 5-5
Owner (O), 5-23
Protect (P), 5-23
Read (R), 5-26
specifying, 5-4
types of, 5-22
Use (U), 5-26
with FTS, 19-13
Write (W), 5-27

ACCOUNTING, option of JOB
command, 16-7

ACLs, 5-1
access categories, 5-2
converting to password protection, F-5
creating, 5-6

default protection, 5-2, 5-14
default protection with access

categories, 5-17
default protection with specific ACLs,

5-15
DELETE command, 5-14
EDIT_ACCESS command, 5-8, 5-13
group names, 5-4
LIST_ACCESS command, 5-3, 5-9,

5-15
listing access rights, 5-3
matching access rights, 5-20
modifying, 5-8
on remote systems, 19-4, 19-6, 19-9
overlapping access rights, 5-5
priority, 5-28
SREST, 5-4
SET_ACCESS command, 5-6, 5-11 to

5-12, 5-18, 5-20
setting, 5-2
specific, 5-2, 5-5
specifying rights, 5-4
types of users, 5-4
who can set, 5-20
see also: Access rights

Active window, 16-18
Add access, 5-26
ADD, option of ABBREV command,

8-6
ADD_ARGUMENT, option of

ABBREV command, 8-6
ADD_COMMAND, option of ABBREV

command, 8-5
ADD_REMOTE_ID command, 19-5

in LOGIN.CPL, 19-6
PROMPT option, 19-5 to 19-6

Addressing modes, 9-3, 10-5
ALIAS, option of UNASSIGN

command, 18-4

Fifth  Edition  X-1



PRIMOS User's Guide

ALL access, 5-27
ALL, option of CLOSE command, 3-16,

14-3
APPEND, ED command, 4-16
&ARGS, CPL directive, 15-5
ARGS, option of JOB command, 16-8
ASCII files, 17-1
ASSIGN command

ALIAS argument, 18-2
error messages, 18-3
messages, 18-2
MT argument, 18-2
MTX argument, 18-2
WATT option, 18-2

ATTACH command, 3-3, F-l
Attaching to directories, 3-3
ATTRIBUTE, option of SPOOL

command, 4-27
Auto Speed Detect, 1-5

B
Backing up files, 18-5
Basenames, 2-3
BATCH command

DISPLAY option, 16-16
STATUS option, 16-16

Batch jobs
$$ JOB command line, 16-12
aborting, 16-12
active, 16-10
canceling, 16-12
creating, 16-6
job IDs, 16-10
jobnames, 16-10
modifying and canceling, 16-10
modifying options, 16-10
monitoring, 16-13
submitting, 16-7

Batch processing, 1-2
Batch queues

active window, 16-18
cptime, 16-18
delta rlevel, 16-19
etime, 16-18
funit, 16-19
monitoring, 16-17
names, 16-18
priority, 16-19
timeslice, 16-19

Batch system
Batch Administrator, 16-6
Batch monitor, 16-6
Batch queues, 16-6
JOB command, 16-7

X-2  Fifth  Edition

job files, 16-5
job ID, 16-7
monitoring, 16-16
queues, monitoring, 16-17

BATGEN command
DISPLAY option, 16-17
STATUS option, 16-17

BINARY, compiler option, 104
Binary files

see: Object files
BEND command, 9-3, 11-1, 11-3

errors, 11-4
examples, 11-6
FILE subcommand, 11-5
HELP subcommand, 11-5
interactive use, 11-4
invoking, 11-3
libraries, 11-6
LIBRARY subcommand, 114
LOAD subcommand, 11-4
MAP subcommand, 11-5
normal linking with, 11-5
options, 11-4
order of linking, 11-6
QUIT subcommand, 11-5
subcommands, 11-4

BOTTOM, ED command, 4-12
BOTTOMJJP, treewalking option, 6-10
BREAK, option of TERM command,

1-15
BREAKPOINT, DBG subcommand,

13-8
BRIEF, option of CMPF command, 17-7
BRIEF, option of SORT command, 17-2

C, subcommand of NETLINK, 19-10
CANCEL, option of FTR command,

19-21
CANCEL, option of JOB command,

16-12
CANCEL, option of SPOOL command,

4-26
CHANGE, ED command, 4-16
CHANGE, option of JOB command,

16-10
CHANGE_PASSWORD command, 1-14
Character data, 4-1
CLEAR, DBG subcommand, 13-9
CLOSE command, 3-16, 14-2

ALL option, 14-3
CMPF command, 17-6

options, list of, 17-7
CNAME command, 3-7

COMI files
see: Command input files

COMINPUT command, 14-5
CONTINUE option, 14-7
options, list of, 14-6

COMINPUT files
see: Command input files

Command environment, 12-5
breadth, 12-7
checking limits, 12-7
depth, 12-6
limits, 12-6

Command files, 14-1
Command input files, 1-2, 4-1, 14-4

chaining, 14-7
closing, 14-9
comments, 14-5
ending, 14-5
errors, 14-7
example, 14-6
file-units in, 14-8
naming, 14-5
phantom execution, 16-2

Command level, 1-7, 8-2, 12-6
Command Line Editor

see: ECL
Commmd line features, 6-1

iteration, 6-2
multiple commands, 6-1
name generation, 6-10
treewalking, 6-8
wildcards, 6-2

Command lines
arguments, 1-7
arguments in CPL programs, 15-5 to

15-6
format, 1-7
modifying and editing, 1-8
options, 1-7

Command output files
see: COMO files

Command Procedure Language
see: CPL

Command processor, 1-7
Commands, interrupting, 3-15
COMO files, 3-14, 14-1

closing, 14-2
creating, 14-2
dating, 14-4
naming, 14-2
opening from phantoms, 16-2

COMOUTPUT command, 3-14, 14-2
END option, 3-14, 14-2
options, list of, 14-3

COMOUTPUT, option of JOB
command, 16-8



Comparing files, 17-6
Compatibility, 1-3
Compiler name suffixes, list of, 10-3
Compilers, 9-2

addressing modes, list of, 10-6
BINARY option, 10-4
cross-reference listings, 10-7
DEBUG option, 13-4
defaults, 10-4
invoking, 10-2
list of, 10-2
listing files, 10-6
LISTING option, 10-7
messages, 10-7
XREF option, 10-7

Compiling programs, 9-2, 10-1
CONCAT command, 17-10
Condition mechanism, 20-1
Conditions, list of, 20-1
CONNECT, NTS command, 1-13
CONTINUE, DBG subcommand, 13-8
CONTINUE, option of COMINPUT

command, 14-6 to 14-7
CONTINUE, option of COMOUTPUT

command, 14-3
Control key characters, 1-9
COPIES, option of SPOOL command,

4-26
COPY command, 3-8, 194

illustrations, 3-9
Copying remote files, 19-4
CPL, 1-2

&ARGS directive, 15-5
arithmetic operators, 15-9
assignment operator, 15-7
command line arguments, 15-5 to 15-6
&DATA directive, 15-13, 15-16
debugging, 15-16
decision making, 15-8
directives, 15-1
directives, summary of, 15-17
&DO directive, 15-11
&ELSE directive, 15-10
&END directive, 15-11, 15-14
ending programs, 15-15
errors, 15-16
EXISTS function, 15-12
function calls, 15-12
global variables, 15-8
&TF directive, 15-8 to 15-10
interpreter, 15-1
invoking programs, 15-2
logical operators, 15-9
naming files, 15-2
NULL function, 15-12
null strings, 15-7

overview, 15-1
phantom execution of programs, 16-2
PRIMOS commands in programs, 15-3
programming, 15-2
relational operators, 15-9
&RETURN directive, 15-15
&SET_VAR directive, 15-7
&SEVERJTY directive, 15-16
subsystems with, 15-13
terminal input, 15-14
&TTY directive, 15-14
variables, 15-4
variables, defining and referencing,

15-6
CPL command, 15-2
CPL, option of JOB command, 16-8
Cptime, 16-18
CPTIME, option of JOB command, 16-8
CREATE command, 3-5
CREATE option of ABBREV

command, 8-4
Creating new directories, 3-5
Cross-reference listings, 10-7
Ctrl-P, 1-9
Ctrl-Q, 1-9
Ctrl-S, 1-9
Current directory, 2-9
Current disk, 2-9
Customizing your environment, 8-1

D access, 5-24
Data, character, 4-1
&DATA, CPL directive, 15-13, 15-16
DATE command, 144
DBG, 9-3, 13-1

BREAKPOINT subcommand, 13-8
Breakpointing, 13-8
CLEAR subcommand, 13-9
clearing breakpoints, 13-9
code requirements, 13-1
compiling and linking programs, 134
CONTINUE subcommand, 13-8
data manipulation features, 13-3
evaluate subcommand (:), 13-10
examining and modifying data, 13-10
examining source code, 13-5
invoking, 13-5
LET subcommand, 13-10
LIST subcommand, 13-9
listing breakpoints, 13-9
miscellaneous features, 134
program control features, 13-2
QUIT subcommand, 13-5

Index

RESTART subcommand, 13-8
sample session, 13-11
SOURCE subcommand, 13-5
SOURCE subcommand arguments,

13-5
SOURCE subcommand line numbers,

13-7
starting program execution, 13-8
STEP subcommand, 13-9
stepping, 13-9
stopping execution, 13-8
terminating a session, 13-5
tracing features, 13-3
WATCH subcommand, 13-10

DC, LOAD subcommand, 11-9
DEBUG, compiler option, 134
Debugging CPL programs, 15-16
Debugging programs, 9-3, 13-1

see also: DBG
Default protection, 5-2, 5-14

listing, 5-15
returning to, 5-18
with access categories, 5-17
with specific ACLs, 5-15

DEFER, option of FTR command, 19-16
DEFER, option of JOB command, 16-8
DEFER, option of MESSAGE command,

8-17
DEFER, option of SPOOL command,

4-27
DEFENE_GVAR command, 8-11
Delete access, 5-24
DELETE command, 3-11, 5-14
DELETE, ED command, 4-17
DELETE, option of ABBREV command,

8-8
Delete protection

determining, 3-13
setting, 3-12

DELETE_VAR command, 8-11
Delta rlevel, 16-19
DEVICE LP, option of FTR command,

19-16
Dialup terminals, 1-5
Directories, 2-2

attaching to, 2-9
creating, 3-5
current, 2-9
MFDs, 2-6
origin, 2-9
parent, 2-6
password-protected, 2-7
passwords, F-l
subdirectories, 2-6
symbol, 2-2
top-level, 2-6

Fifth  Edition  X-3



PRIMOS User's Guide

Directory contents, examining, 3-1
Directory passwords

assigning, F-l
in pathnames, F-2
non-owner, F-l
owner, F-l

Disk numbers, 2-8
Disk quotas, 8-18
Disk volumes, 2-6
Disks, 2-6

adding, 19-2
availability of, 19-3
current, 2-9
numbers, 2-8

DISPLAY, option of BATCH command,
16-16

DISPLAY, option of BATGEN
command, 16-17

DISPLAY, option of FTR command,
19-18

DISPLAY, option of JOB command,
16-14

DISPLAY, option of TERM command,
1-16

Display, starting and stopping, 1-9
&DQ CPL directive, 15-11
Document processing, 4-4
DSTN_NTFY, option of FTR command,

19-20
DSTN_SJTE, option of FTR command,

19-15
DSTNJUSER, option of FTR command,

19-16, 19-20
DUNLOAD, ED command, 4-21
Dynamic segments, 12-7

ECL, 1-8 to 1-9
aborting commands, 7-7
changing case and character position,

7-9
command conventions, 7-2
command history, 7-6, 7-11
command macros, 7-20
command summary, 7-24
defining, copying, and deleting, 7-10
deleting characters and lines, 7-5
expanding abbreviations, 7-20
expanding pathnames, 7-16
explaining keys, 7-20
extended commands, 7-24
hidden commands, 7-14
moving and deleting words, 7-8
moving the cursor, 7-3

X-4  Fifth  Edition

network, using across, 7-24 FILE, 4-23
numeric arguments, 7-20 FIND, 4-14
password command, 7-23 format of, 4-9
prompts, 7-23 m, 4-18
redisplaying previous command line, INSERT, 4-18

7-5 LOAD, 4-22
referencing other directories, 7-18 LOCATE, 4-13
refreshing current command line, 7-5 multiple, on line, 4-10
repeating commands, 7-8 NEXT, 4-12
restoring copied and deleted text, 7-11 NFTND, 4-14
searching, 7-6 OOPS, 4-19
starting and stopping, 7-2 POINT, 4-13

ECL command, 7-2 PRINT, 4-10
ECL options QUIT, 4-22

ENTRY, 7-9 RETYPE, 4-18
ERROR_BRIEF, 7-23 SAVE, 4-23
list, 7-28 table of, 4-11
OFF, 7-2 TOP, 4-11
ON, 7-2 UNLOAD, 4-20
READY_BRIEF, 7-23 WHERE, 4-12
STACK, 7-15 EDJT_ACCESS command, 5-8, 5-13
STICK 7-14 NO_QUERY option, 5-8
WARNING J3RTEF, 7-23 EDIT_CMD_LINE
WJLDJAJL, 7-17 see: ECL

ED, 4-2, 10-1 Editing process, 4-2
command arguments, 4-9 EDITOR
command format, 4-9 see: ED - "
copying text to and from disk, 4-20 &ELSE, CPL directive, 15-10
current line, 4-8 EMACS, 4-2, 10-1
EDIT mode, 4-6 language modes, 10-1
empty lines, 4-6 with NETLINK, 19-12
entering text, 4-7 &END, CPL directive, 15-11, 15-14
error messages, 4-10 END, option of COMINPUT command,
escape character, 4-6 14-6
INPUT mode, 4-6 END, option of COMOUTPUT
invoking, 4-5 command, 3-14, 14-2 to 14-3
line numbers, 4-12 ENTRY, option of ECL command, 7-9
modes, 4-5 Entryname
modifying text, 4-16 see: Objectnames
moving pointer, 4-11 EPFs, 9-3, 11-1, 12-6
multiple commands, 4-10 active, 12-6
null lines, 4-8 advantages of, 11-2
quitting and saving, 4-22 inactive, 12-6
sample file, 4-7 restarting, 124
searching, 4-13 suspended, 12-6
special characters, 4-6 ER! prompt, 1-6, 8-2
switching modes, 4-6 Erase character, 1-8
table of basic commands, 4-11 ERASE, option of TERM command,

ED command, 4-5 1-15
ED commands Error messages

APPEND, 4-16 ASSIGN command, 18-3
arguments to, 4-9 compiler, 10-7
BOTTOM, 4-12 list of, D-l
CHANGE, 4-16 runtime, 12-5
DELETE, 4-17 Error prompts, 8-3
DUNLOAD, 4-21 ERROR_BRTEF, option of ECL



Index

r

command, 7-23
Errors

ATTACH, 34
in command input files, 14-7
in CPL programs, 15-16
remote file access, 19-6

Etime, 16-18
ETTME, option of JOB command, 16-8
Evaluate (:), DBG subcommand, 13-10
Executable files

see: Runfiles
Executable Program Formats

see: EPFs
Execute access, 5-27
EXISTS function, 15-12

FILE, BIND subcommand, 11-5
FILE, ED command, 4-23
File system, 2-1

commands, 3-1
objects, 2-1
password protection, F-l
quotas, 8-18
symbols for objects, 2-2
tree structure, 2-2, 2-5

File system objects, 2-1
naming, 2-3
storage of, 2-3
symbols for, 2-2
see also: Files

File Transfer Service
see: FTS

File tree, 2-5
File tree diagram, 2-5
Filename, COMO files, 14-2
Filenames, 2-1

basenames, 2-3
characters in, 2-3
command input files, 14-5
CPL, 15-2
object, 104
runfiles, 12-3
source files, 10-2
suffix conventions, 24
suffixes, 2-3

Files, 2-1
ASCH, 17-1
backing up, 18-5
command, 14-1
command input, 4-1, 144
COMQ 3-14, 14-1
comparing, 17-6
concatenating, 17-10

copying, 3-8
deleting, 3-11
job, 16-5
listing, 3-6
merging, 17-8
object, 9-2
printing, 4-24
program listing, 10-6
protecting, 5-1 to 5-2
protecting from deletion, 3-12
remote access, 19-2
remote, ACLs, 194, 19-6, 19-9
remote, copying, 194
renaming, 3-7
restoring from tape, 18-6
runfiles, 9-2, 11-1
sorting, 17-1
source, 10-1
symbol, 2-2
text, 4-1
transferring with FTS, 19-13
transparent access, 1-3

File-units, 14-7, 16-2
FILMEM command, 11-9
FIND, ED command, 4-14
FORCE, option of MRGF command,

17-8
Forced user validation, 19-5
FROM, option of SPOOL command,

4-28
FTR command, 19-14

CANCEL option, 19-22
DEFER option, 19-16
DEVICE LP option, 19-16
DISPLAY option, 19-18
DSTNJNTFY option, 19-20
DSTN_SITE option, 19-15
DSTNJJSER option, 19-16, 19-20
HELP option, 19-21
LOG option, 19-19
PRIORITY option, 19-16
RELEASE option, 19-22
SOURCE_USER option, 19-20
SRCJNTFY option, 19-20
SRC_SJTE option, 19-15
STATUS option, 19-17

FTS, 19-13
access rights, 19-13
canceling requests, 19-21
checking status of requests, 19-17
deferring transfer, 19-16
FTR command, 19-16
help facility, 19-21
logging request events, 19-19
printing a file, 19-16
receiving files, 19-15

request names, 19-14
request numbers, 19-14
request on hold, 19-22
requesting notification, 19-20
sending files, 19-14
sites, 19-14
temporary destination files, 19-14
when to use, 19-22

Full pathnames, 2-8
Function calls, 15-12
FUNIT, option of JOB command, 16-8

Global variable files, 8-10
Global variables, 8-10

commands, 8-10
in abbreviations, 8-12
in Batch and phantom environments,

8-13
in CPL programs, 15-8
in interactive commands, 8-11
in phantoms, 16-3
in programs, 8-13

GO, subcommand of MRGF, 17-8
Group names in ACLs, 54

H
HELP, BIND subcommand, 11-5
HELP command, 1-16
HELP, option of FTR command, 19-21
HELP, subcommand of NETLINK,

19-12
HOME, option of JOB command, 16-9

/

I mode, 10-5
IAP

see: Initial Attach Point
IB, ED command, 4-18
IDs, project, 1-12
IDs, user, 1-10
&IF, CPL directive, 15-8 to 15-10
Information, online, 1-16
Information, requesting with HELP, 1-16
Initial Attach Point (IAP), 2-9
INITIALIZE, LOAD subcommand, 11-9
INrnALIZE_COMMAND_

ENVIRONMENT command, 12-9
to 12-10

INSERT, ED command, 4-18
Interactive dialog, 1-2

Fifth  Edition  X-5



PRIMOS User's Guide

Interrupting commands, 3-15
Invoking programs, 12-2
Iteration, 6-2

Job command, 16-7
JOB command

ABORT option, 16-12
CANCEL option, 16-12
CHANGE option, 16-10
DISPLAY option, 16-14
manage-options, 16-10
monitor-options, 16-14
NOTIFY option, 16-14
options, 16-7
PRIORITY option, 16-11
QUEUE option, 16-11
RESTART option, 16-11
STATUS option, 16-14
submit-options, 16-7, 16-11

Joining files, 17-10

K
Kill character, 1-8
KILL, option of TERM command, 1-15

L access, 5-26
LAN Terminal Server, 1-5
LAN300, 1-3, 1-5, 19-1
LANs, 1-3

diagram, 14
LAN Terminal Server, 1-5
LAN300, 1-3, 1-5, 19-1
NTS, 1-5
RINGNET, 19-1

Leading command, 3-1
arguments and options, 3-2
PROTECT option, 3-13
using wildcards with, 6-6

LET, DBG subcommand, 13-10
Libraries, linking, 11-3
LIBRARY, BIND subcommand, 114
LIBRARY, LOAD subcommand, 11-9
Library names, list of, 11-3
LIKE, option of SET_ACCESS

command, 5-20
Linking process, 11-2

external references, 11-2
libraries, 11-2
user-supplied subroutines, 11-2

X-6  Fifth  Edition

Linking programs, 9-2, 11-1
Linking utilities, 9-3

addressing modes, 11-2
List access, 5-26
LIST, DBG subcommand, 13-9
LIST, option of ABBREV command, 8-9
LIST, option of SPOOL command, 4-25
LIST.ACCESS command, 5-3, 5-9,

5-15, 5-28
LIST_EPF command, 12-9
LISTING, compiler option, 10-7
USTJiMTTS command, 12-7, 12-9
USTJMIMCOMMANDS command,

12-9,12-12
UST_PRIORTTY_ACCESS command,

5-28
LIST_QUOTA command, 8-18
JJST_REMOTEJD command, 19-6

ON option, 19-7
LISTVAR command, 8-11
Literal characters, 4-7
LOAD, 9-3,11-2

DC subcommand, 11-9
helpful PRIMOS commands, 11-9
INITIALIZE subcommand, 11-9
invoking, 11-8
LIBRARY subcommand, 11-9
LOAD subcommand, 11-9
MAP subcommand, 11-9
MODE subcommand, 11-9
normal linking, 11-9
order of linking, 11-10
QUIT subcommand, 11-9
SAVE subcommand, 11-9

LOAD, BIND subcommand, 114
LOAD command, 11-8
LOAD, ED command, 4-22
LOAD, LOAD subcommand, 11-9
Local area networks, 1-3

see also: LANs
LOCATE ED command, 4-13
LOG, option of FTR command, 19-19
Logging in, 1-10

problems, 1-12
remote, 19-7
with LAN 300, 1-13
with NETLINK, 19-10

Logical device numbers, 18-2 to 18-3
Logical device numbers, disks, 194
Logical disks, 2-6
LOGIN command, 1-10

alternate form, 1-13
ON option, 19-7

Login files, 8-13
Login files, alternate forms, 8-15
LOGIN.CPL, sample file, 8-13

LOGOUT command, 1-14
with phantoms, 16-3

LON command, 16-3
LONG, option of RDY command, 12-9

M
Magnetic tapes

see: Tapes
MAGRST command, 18-6
MAGSAV command, 18-5
MAP, BIND subcommand, 11-5
MAP, LOAD subcommand, 11-9
Master File Directories, 2-6
MERGE, option of SORT command,

17-2, 17-5
Merging text files, 17-8
MESSAGE command, 8-16

ACCEPT option, 8-17
DEFER option, 8-17
in Batch jobs, 16-15
REJECT option, 8-17
STATUS option, 8-17

Messages, receive states, 8-17
Messages, sending, 8-16
MFDs, 2-6
Mini-command level, 12-8
Mini-commands, list of, 12-9
MINL, option of CMPF command, 17-7
MODE, LOAD subcommand, 11-9
MODE REMOTE_ECHO, option of

NETLINK command, 19-12
MODIFY, option of SPOOL command,

4-29
MRGF command, 17-8

FORCE option, 17-8
GO subcommand, 17-8
interactive mode, 17-8
OUTF option, 17-8
x subcommand, 17-8

MT, argument to ASSIGN command,
18-2

MT, option of UNASSIGN command,
184

N
Name generation, 6-10
Name generation, list of characters, 6-12
raTLENK, 19-9

@ prompt, 19-10
C subcommand, 19-10
example of, 19-10
HELP subcommand, 19-12



logging in, 19-10
logging out, 19-10
QUIT subcommand, 19-10
when to use, 19-12

NETLINK command, 19-10
MODE REMOTEJSCHO option,

19-12
TO option, 19-11

Network Terminal Service, 1-5
Networks, 1-3, 19-1

LAN, 1-3, 19-1
LAN300, 1-3, 1-5
local system, 19-1
nodenames, 19-2
NTS, 1-5
point-to-point connections, 1-3
PRIMENET, 1-3
PSDN, 19-1
remote systems, 19-1
RINGNET, 1-3
status of, 19-8
wide area, 1-3

NEXT, ED command, 4-12
NFIND, ED command, 4-14
NO_COMOUTPUT, option of JOB

command, 16-9
NQ_DEFER, option of JOB command,

16-9
Nodenames, 19-2, 19-10
NONE access, 5-27
NO_NOTTFY, option of JOB command,

16-9
NONTAG, option of SORT command,

17-2
NO_QUERY, option of EDTT.ACCESS

command, 5-8
NO_QUERY, option of SET.ACCESS

command, 5-7, 5-11
NOTIFY, option of JOB command, 16-9,

16-14
NOTIFY, option of SPOOL command,

4-28
NOXOFF, option of TERM command,

1-16
NTS, 1-5
NTS CONNECT command, 1-13
NTTY, option of COMOUTPUT

command, 14-3
NULL CPL function, 15-12
Null string, 15-7

O access, 5-23
Object files, 9-2

creating, 104
naming, 104

Objectnames, 2-1, 2-3
characters in, 2-3
suffixes, 2-3

OFF, option of ABBREV command, 8-8
OFF, option of ECL command, 7-2
OK, prompt, 1-6, 8-2
ON, option of ABBREV command, 8-8
ON, option of ECL command, 7-2
ON, option of UST_REMOTE_ID

command, 19-7
ON, option of LOGIN command, 19-7
On-units, 20-1

default, 20-2
writing, 20-2

OOPS, ED command, 4-19
Operating system, 1-1

see also: PRIMOS
Ordinary pathnames, 2-8
Origin directory, 2-9
OUTF, option of MRGF command, 17-8
Owner access, 5-23

P access, 5-23
Packet Switched Data Networks

see: PSDNs
Parent directory, 2-6
Partitions, 2-6
PASSWD command, F-l
Password-protected directories, 2-7

converting to ACLs, F-3
setting access rights, F-2

Passwords, 1-10
assigning or changing, 1-14
computer generated, 1-11
directory, F-l
lifetime, 1-11
see also: Directory passwords

Pathnames, 2-6
absolute, 2-6
directory passwords in, 2-8
full, 2-8
illustration, 2-7
omitting the MFD name, 2-8
ordinary, 2-8
relative, 2-9
shortening, 2-8
specifying, 2-6
uniqueness of, 2-8

PAUSE, option of COMINPUT
command, 14-6

PAUSE, option of COMOUTPUT

Index

command, 14-3
Peripheral devices, tape drives, 18-1
PHANTOM command, 16-1
Phantom processes, 1-3
Phantoms, 16-1

command file example, 16-4
command input files, 16-2
COMO files, opening, 16-2
CPL programs, 16-2
global variables in, 16-3
initiating other, 16-2
input and output, 16-2
logout, 16-3
status, 164

Physical device numbers, 18-2 to 18-3
POINT, ED command, 4-13
Point-to-point connections, 1-3
PRIMENET, 1-3, 19-1

facilities, list of, 19-1
FTS, 19-13
NETLINK facility, 19-9
network status, 19-8
nodenames, 19-10
remote file access, 19-2
remote login, 19-7
virtual circuits, 19-8

PRIMOS, 1-1
command environment, 12-5
command level, 1-7
command line, 1-7
command processor, 1-7
compatibility, 1-3
condition mechanism, 20-1
control characters, 1-9
erase character, 1-8
file system, 2-1
kill character, 1-8
operating system overview, 1-1
processes, 16-1
prompts, 1-6
reserved characters, 1-9
subsystems, 1-7
terminal connections, 14
user dialog, 1-5
user interface, 1-2

PRIMOS commands
ABBREV,  84
ADD_REMOTE_ID, 19-5
ASSIGN, 18-1
ATTACH, 3-3, F-l
BATCH, 16-16
BATGEN, 16-17
BIND, 11-3
CHANGE_PASSWORD, 1-14
CLOSE, 3-16, 14-2
CMPF, 17-6

Fifth  Edition  X-7



PRIMOS User's Guide

CNAME, 3-7
COMINPUT, 14-5
COMOUTPUT, 3-14, 14-2
CONCAT, 17-10
COPY, 3-8, 194
CPL, 15-2
CREATE, 3-5
DATE 144
DEFINE_GVAR, 8-11
DELETE, 3-11, 5-14
DELETE_VAR, 8-11
ECL 7-2
ED, 4-5
EDIT_ACCESS, 5-8, 5-13
essential, 1-10
file system, 3-1
FILMEM, 11-9
FTR, 19-14
HELP, 1-16
in CPL programs, 15-3
INTTIALrZE_COMMAND_

ENVIRONMENT, 12-9 to 12-10
JOB, 16-7
leading, 3-1
LIST.ACCESS, 5-3, 5-9, 5-15, 5-28
LIST_EPF, 12-9
LIST_LEMTTS, 12-7, 12-9
UST_MTNI_COMMANDS, 12-9,

12-12
UST_PRIORTTY_ACCESS, 5-28
LIST_QUOTA, 8-18
LIST_REMOTE_ID, 19-6
LISTVAR,  8-11
LOAD, 11-8
LOGIN, 1-10, 19-7
LOGOUT, 1-14
LON, 16-3
MESSAGE, 8-16, 16-15
MRGF, 17-8
NETLINK, 19-10
ORIGIN, 3-5
PASSWD, F-l
PHANTOM, 16-1
PROTECT, F-3
RDY, 8-2, 12-9
RELEASE_LEVEL 3-16, 12-9
REMOVE_REMOTE_ID, 19-7
RESUME, 12-2, 15-2
REVERTJPASSWORD, F-5
SEG, 12-2
SET.ACCESS, 5-6, 5-11 to 5-12,

5-18, 5-20, F-3
SET_DELETE, 3-12
SET.QUOTA, 8-18
SETJVAR, 8-11
SIZE, 8-18

X-8  Fifth  Edition

SLIST, 3-6
SORT, 17-1
SPOOL 4-24
START, 12-3
STATUS DEVICE, 18-3
STATUS DISKS, 19-3
STATUS NETWORK 19-8
STATUS UNITS, 14-3
STATUS USERS, 164
TERM, 1-9, 1-15
UNASSIGN, 18-3
using objectnames in, 2-10
using pathnames in, 2-10

PRINT, ED command, 4-10
Printer environments, 4-27

destinations, 4-27
form names, 4-27

Printing text files, 4-24
at remote sites, 19-16
deferring, 4-27
multiple copies of, 4-26
printing part of a file, 4-28

Priority ACLs, 5-28
LIST_ACCESS command, 5-28
LIST_PRIORtTY_ACCESS, 5-28

Priority Batch queues, 16-18
PRIORITY, option of FTR command,

19-16
PRIORITY, option of JOB command,

16-9. 16-11
Processes, 16-1
Program listing files, 10-6
Programming, advanced overview, 9-1
Programming, introductory overview, 9-1
Programs

combining languages in, 10-8
compiling, 9-2, 10-1
CPL, 15-2
creating source code, 9-2
debugging, 9-3, 13-1
invoking, 12-2
linking, 9-2, 11-1
phantom execution, 16-1
restarting, 12-3
running, 9-3, 12-1

Programs: debugging
see: DBG

PROJECT, option of JOB command,
16-9

PROMPT, option of ADD_REMOTE_ID
command, 19-5 to 19-6

Prompts, 1-6
changing, 8-1
default, 1-6
error, 8-3
ER!, 1-6

OK, 1-6
long, 8-1
message text, 8-2
NETLINK, 19-10
NTS, 1-13
ready, 8-3
subsystem, 1-6
system, 1-6
warning, 8-3

Protect access, 5-23
PROTECT command, F-2
PROTECT, option of leading command,

3-3, 3-13
Protecting files

from deletion, 3-12
with ACLs, 5-2

Protection codes for password-protected
directories, F-3

PSDNs, 19-1

Queue names, Batch system, 16-18
QUEUE, option of JOB command, 16-9

16-11
QUIT, BIND subcommand, 11-5
QUIT, DBG subcommand, 13-5
QUTT, ED command, 4-22
QUIT, LOAD subcommand, 11-9
QUIT, NETLINK subcommand, 19-10

R access, 5-26
R mode, 10-6
RDY command, 8-2, 12-9

list of options, 8-3
Read access, 5-26
Ready prompts, 8-3
READY_BRIEF, option of ECL

command, 7-23
Record, in ASCII files, 17-1
REJECT, option of MESSAGE

command, 8-17
Relative pathnames, 2-9
RELEASE, option of FTR command,

19-22
RELEASE_LEVEL command, 3-16,

12-9
LONG option, 12-9

Remote file access
adding disks, 19-2
errors, 19-6
remote IDs, 19-5

" >

1



Remote File Access, 19-2
Remote IDs

adding, 19-5
exaniining, 19-6
removing, 19-7

Remote login, 19-7
Remote Login, when to use, 19-9
REMOVE_REMOTEJD command,

19-7
REPORT, option of CMPF command,

17-7
Reserved characters, 1-9
SREST identifier in ACLs, 54
RESTART, DBG subcommand, 13-8
RESTART, option of JOB command,

16-9, 16-11
Restarting programs, 12-3
Restoring files from tape, 18-6
RESUME command, 12-2, 15-2
&RETURN, CPL directive, 15-15
Returning to the origin directory, 3-5
RETYPE, ED command, 4-18
REVERTJPASSWORD command, F-5
RINGNET, 1-3, 19-1
Runfiles, 9-2, 11-1

naming, 12-3
Running programs, 9-3
Running programs interactively, 12-1
RUNOFF, 44
Runtime error messages, D-l, 12-5

SAVE, ED command, 4-23
SAVE, LOAD subcommand, 11-9
SCR_SITE, option of FTR command,

19-15
SEG command, 12-2
SEG utility, 12-2
Segment directories, 2-2

symbol, 2-2
Segments

dynamic, 12-7
limits, 12-7
static, 12-7

SET_ACCESS command, 5-6, 5-11 to
5-12, 5-18, F-3

LIKE option, 5-20
NO -QUERY option, 5-11

SET_DELETE command, 3-12
SET_QUOTA command, 8-18
Setting terminal characteristics, 1-15
SETJVAR command, 8-11
&SETJVAR, CPL directive, 15-7
&SEVERITY, CPL directive, 15 16

Sites, 19-14
SIZE command, 8-18
SLIST command, 3-6
SORT command, 17-1

key fields, 17-3
key specifications, 174
MERGE option, 17-5
mergesort example, 17-5
options, list of, 17-2

Sort keys, 17-3
Sorting files, 17-1
Source code, 9-2
SOURCE, DBG subcommand, 13-5

arguments, 13-5
line numbers, 13-7

Source files, 10-1
Source Level Debugger

see: DBG
SOURCEJJSER, option of FTR

command, 19-20
SPACE, option of SORT command, 17-2
Specific ACLs, 5-2
SPOOL command, 4-24

ATTRIBUTE option, 4-27
CANCEL option, 4-26
canceling requests, 4-26
COPIES option, 4-26
DEFER option, 4-27
FROM option, 4-28
LIST option, 4-25
MODIFY option, 4-29
modifying options, 4-29
multiple options, 4-28
NOTIFY option, 4-28
TO option, 4-28

SPOOL queue, 4-25
illustration, 4-25
status of, 4-25

Spooling
see: Printing

SRC_NTFY, option of FTR command,
19-20

STACK, option of ECL command, 7-15
START command, 12-3
START, option of COMINPUT

command, 14-6
Static runfiles, 11-2

converting to EPFs, 11-2
Static segments, 12-7

see also: Static runfiles
Static-mode programs

converting to EPFs, 11-2
restarting, 124

STATUS DEVICE command, 18-3
STATUS DISKS command, 19-3
STATUS NETWORK command, 19-8

Index

STATUS, option of BATCH command,
16-16

STATUS, option of BATGEN command,
16-17

STATUS, option of FTR command,
19-17

STATUS, option of JOB command,
16-14

STATUS, option of MESSAGE
command, 8-17

STATUS UNITS command, 14-3
STATUS USERS command, 164
STEP, DBG subcommand, 13-9
STICK, option of ECL command, 7-14
Subdirectories, 2-6
Subsystems, 1-7
Suffixes, 2-3
Suffixes, compiler name, 10-3
Syntax suppression, 6-13
System Administrator, 1-10
System level, 1-7
System names

see: Node names
System prompts, 1-7
Systemnames, 19-2, 194, 19-14

TAG, option of SORT command, 17-2
Tape drives

assigning, 18-1
releasing, 18-3
unassigning, 18-3

TERM command, 1-9, 1-15
BREAK option, 1-15
DISPLAY option, 1-16
ERASE option, 1-15
KILL option, 1-15
NOXOFF option, 1-16
XOFF option, 1-15

Terminal sessions, recording, 3-14
Terminals, 1-4

communication rate, 1-5
connections, 1-5
dialup, 1-5
input buffer, 1-6
LAN Terminal Server, 1-5
NTS, 1-5

Text editors, 4-2
ED, 4-2
editing, 4-2
editing window, 4-2
EMACS, 4-2
line-oriented, 4-2
saving, 4-2

Fifth  Edition  X-9



PRIMOS User's Guide

screen-oriented, 4-2
Text files, 4-1
Text formatter, 44
Timeslice, 16-19
TO, option of NETLINK command,

19-11
TO, option of SPOOL command, 4-28
TOP, ED command, 4-11
Top-level directories, 2-6
Transferring files with FTS, 19-13
Treewalking, 6-8

options, 6-10
&TTY, CPL directive, 15-14
TTY, option of COMINPUT command,

14-6
TTY, option of COMOUTPUT

command, 14-3
Type-ahead, 1-6

u
U access, 5-26
UNASSIGN command, 18-3

ALIAS option, 184
MT argument, 184
UNLOAD option, 184

Unassigning tape drives, 18-3
UNLOAD, ED command, 4-20
UNLOAD, option of UNASSIGN

command, 184
Use access, 5-26
User interface, 1-2
User's dialog with PRIMOS, 1-5

W access, 5-27
WATT, option of ASSIGN command,

18-2
WALKJFROM, treewalking option, 6-10
WALKTO, treewalking option, 6-10
Warning prompts, 8-3
WARNING.BRIEF, option of ECL

command, 7-23
WATCH, DBG subcommand, 13-10
WHERE, ED command, 4-12
Wide area networks, 1-3
Wildcards, 6-2

leading command, 6-6
list of characters, 6-3
options, 64
with iteration lists, 64

WTLD_TAIL, option of ECL command,
7-17

Write access, 5-27

X access, 5-27
x, subcommand of MRGF, 17-8
XOFF, option of TERM command, 1-15
XREF, compiler option, 10-7

V mode, 10-5
Variables

in abbreviations, 8-7
in CPL programs, 154

Variables, global
see: Global variables

Virtual circuits, 19-8

X-10  Fifth  Edition



Surveys



Reader  Response  Form
PRIMOS User's Guide
DOC4130-5LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our user publications.

1. How do you rate this document for overall usefulness?

□  excellent  □  very  good  □  good  □  fair  □  poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

I  I  Much  better  □  Slightly  better  □  About  the  same
I  |  Much  worse  □  Slightly  worse  □  Cant  judge

5. Which other companies' manuals have you read?

NameL_
Position:
Company:.
Address:_

.Postal Code:.



First Class Permit #531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage  will  be  paid  by:

Prime
Attention:  Technical  Publications
BldglO
Prime Park, Natick, Ma. 01760

NO  POSTAGE
NECESSARY

IF  MAILED
IN THE

UNITED  STATES

' ■


	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	vi
	vii
	viii
	ix
	About This Book
	xi
	xii
	xiii
	xiv
	xv
	Part I: PRIMOS Basics
	Chapter 1
	Getting Started
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	Chapter 2
	The PRIMOS File System
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	Chapter 3
	PRIMOS File System Commands
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	Chapter 4
	Creating and Printing Files
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	Chapter 5
	Protecting Your Files and Directories
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	Chapter 6
	Command-line Features
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	Chapter 7
	Command-line Editor
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	Chapter 8
	Customizing Your Environment
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	Part II: Programming
	Chapter 9
	Introduction to PRIMOS Programming
	9-1
	9-2
	9-3
	9-4
	Chapter 10
	Compiling Programs
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	Chapter 11
	Linking Programs
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	Chapter 12
	Running Programs Interactively
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	Chapter 13
	Debugging Programs
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	13-11
	13-12
	13-13
	13-14
	Part III: PRIMOS System Facilities
	Chapter 14
	Command Files
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	Chapter 15
	The Basics of CPL
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	15-9
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	Chapter 16
	Phantom and Batch Job Processing
	16-1
	16-2
	16-3
	16-4
	16-5
	16-6
	16-7
	16-8
	16-9
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	Chapter 17
	File-handling Utilities
	17-1
	17-2
	17-3
	17-4
	17-5
	17-6
	17-7
	17-8
	17-9
	17-10
	17-11
	Chapter 18
	Tapes
	18-1
	18-2
	18-3
	18-4
	18-5
	18-6
	18-7
	18-8
	18-9
	Chapter 19
	PRIMENET
	19-1
	19-2
	19-3
	19-4
	19-5
	19-6
	19-7
	19-8
	19-9
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	Chapter 20
	The Condition Mechanism
	20-1
	20-2
	Appendices
	Appendix A
	Glossary
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	Appendix B
	System Defaults and Constants
	B-1
	B-2
	Appendix C
	The Prime Extended Character Set
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	Appendix D
	Error Messages
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	Appendix E
	Ed Command Summary
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	Appendix F
	Directory Passwords
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	Appendix G
	System Information
	G-1
	G-2
	G-3
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	Surveys
	
	

